0
23kviews
Let G be the set of real numbers and let G be the set of real numbers and let a * b=ab/2. Show that (G, *) is a abelian group.
1 Answer
2
4.7kviews
  1. First verify * is a binary operatin.

    If a and b $\in$ G then $a*b\bigg(=\dfrac{ab}{2}\bigg)$ is a nonzero real number,

    $\therefore a*b \in G$

  2. Associativity : Since $(a*b)*c=\bigg(\dfrac{ab}{2}\bigg)*c=\dfrac{(ab)c}{4}$

    $a*(b*c)=a*\bigg(\dfrac{bc}{2}\bigg)=\dfrac{a(bc)}{4}=\dfrac{(ab)c}{4}$

    $\therefore *$ is associative.

    The number 2 is the identity in G and $a \in G$ then

    $$a*2=\dfrac{(a)(2)}{2}=a=\dfrac{(2)(a)}{2}=2*a$$

    Finally, if $a \in G$ then $a'=\dfrac4a$ is an inverse of a.

    $\because a*a'=a*\dfrac4a=\dfrac{a(4/a)}{2}=2\dfrac{(4/a)(a)}{2}=\dfrac4a*a=a*a'$

    Since $a*b=b*a \forall a, b \in G$ we conclude that G is an abelian group.

Please log in to add an answer.