0
979views
By transforming to polar co-ordinates $\iint \frac{(x^2+y^2)}{(x^2+y^2)^{3/2}}dxdy$ evaluate over the region of the circle $x^2+y^2=2ax$ in the first quadrant.
1 Answer
0
0views

$ \text{ The circle } x^2 + y^2 - 2ax = 0 \text { is a circle with center (a,0) and radius a. To change to polar coordinate.} \\ $

$ x= rcos\theta, y = rsin\theta \\ $

$ dxdy = rdrd\theta \\ $

$ \text {The equation of circle becomes r = acos}\theta \\ $

$ I = \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{acos\theta} \frac {r^2cos^2\theta - r^2sin^2\theta } {(r^2)^\frac{3}{2} }r dr d\theta \\ $

$ I = \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{acos\theta} \frac {r^2cos2\theta} {(r^3)} r dr d\theta \\ $

$ = \int_{\theta = 0}^{\frac{\pi}{2}} \left [r \right ]_0^{acos\theta} cos2\theta d\theta \\ $

$ = \int_{\theta = 0}^{\frac{\pi}{2}} (acos\theta) cos2\theta d\theta \\ $

$ = \frac{a}{2} \int_{\theta = 0}^{\frac{\pi}{2}} ( cos3\theta + cos\theta) d\theta \\ $

$ = \frac{a}{2} \left [\frac{sin3\theta}{3} + sin\theta \right ]_0^{\frac{\pi}{2}} \\ $

$ = \frac{a}{2} \int_{\theta = 0}^{\frac{\pi}{2}} \left [\frac{1}{3}\frac{sin3\pi}{2} + 1 \right ] \\ $

$ = \frac{a}{2} \left[ \frac{-1}{3} + 1 \right ] \\$ $ = \frac{a}{2} \frac{2}{3} = \frac{a}{3} \ $

Please log in to add an answer.