0
5.7kviews
Change to polar co-ordinates and evaluate $\int_{0}^{2}\int_{0}^{\sqrt{2x-x^2}}\frac{x\,dy\,dx}{\sqrt{x^2+y^2}}$ .
1 Answer
1
578views

$ \text{ The region of integration is from y = 0 to y = } \sqrt{2x-x^2} \Longrightarrow x^2 + y^2 -2x = 0 \\ $

$ \text{x= 0 to x = 2} \\ $

$ \text{changing to polar coordinates x = } rcos\theta , y= rsin\theta, dxdy = rdrd\theta \\ $

$ I = \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{2cos\theta} \frac {rcos\theta rdr d\theta} {r} \\ $

$ = \int_{\theta=0}^{\frac{\pi}{2}} \left[ \frac {r^2}{2} \right ]_0^{2cos\theta} d\theta \\ $

$ = \frac{1}{2} \int_{\theta=0}^{\frac{\pi}{2}} 4cos^2\theta d\theta \\ $

$ = 2 \int_{\theta=0}^{\frac{\pi}{2}} \frac{(1+cos2\theta)}{2} d\theta \\ $

$ = \left [ \theta + \frac{sin2\theta}{2}\right]_0^\frac{\pi}{2} \\ $

$ = \frac{\pi}{2} \\ $

Please log in to add an answer.