× Close
Join the Ques10 Community
Ques10 is a community of thousands of students, teachers, and academic experts, just like you.
Join them; it only takes a minute
Sign up
Question: Evaluate $ \int \frac{z - 1}{z^2 + 2z + 5} $ dz over the curve C
0

Where C is:

(i) |z|=1

(ii) |z+1+i|=2

(iii) |z+1-i|=2

Subject: Applied Mathematics 4

Topic: Complex Integration

Difficulty: Medium

m4e(34) • 78 views
ADD COMMENTlink
modified 17 days ago  • written 3 months ago by gravatar for Manan Bothra Manan Bothra0
0

For poles, $z^2 + 2z + 5 = 0 $

$ z = \frac{-2 \pm \sqrt{2^2 - 4(1)(5)}}{2} \\ = \frac{-2 \pm \sqrt{-16}}{2} \\ = \frac{-2 \pm 4i}{2} = -1 \pm 2i \\ \therefore z = -1+2i,-1-2i $

Therefore, z = (-1,2) & z =(-1,-2) are the two poles.

Let, A(-1,2) and B(-1,-2)

(i) |z| = 1

c = (0,0) and r = 1

d(Ac) = $ \sqrt{(0+1)^2 + (0-2)^2} = \sqrt{1+4} = \sqrt{5} \gt 1 $

Therefore, A lies outside the circle.

d(Bc) = $ \sqrt{(0+1)^2 + (0+2)^2} = \sqrt{1+4} = \sqrt{5} \gt 1 $

Therefore,B lies outside the circle.

Both the poles lie outside the circle |z|=1

Therefore, by Cauchy's theorem, $ \int_c \frac{z-1}{z^2 + 2z + 5} \,\, dz = 0 $

(ii) |z+1+i| = 2

z+1+i=0, therefore, z= -1-i and r = 2

Therefore, centre = (-1,-1), r = 2

d(Ac) = $ \sqrt{(-1+1)^2 + (2+1)^2} = \sqrt{3^2} = 3 \gt 2 $

d(Bc) = $ \sqrt{(-1+1)^2 + (-2+1)^2} = \sqrt{(-1)^2} = 1 \lt 2 $

Therefore, A lies outside the circle while B lies inside the circle.

Therefore residue of f(z) at z = -1-2i is

$ lim_{z \to (-1-2i)} (z+1+2i)[\frac{z-1}{z^2+2z+5}] \\ = lim_{z \to (-1-2i)} (z+1+2i)[\frac{z-1}{(z+1-2i)(z+1+2i)} \\ = \frac{-1-2i-1}{-1-2i+1-2i} = \frac{-2-2i}{-4i} = \frac{-1-i}{-2i} = \frac{1-i}{2} $

$ \therefore \int_c \frac{z-1}{z^2+2z+5} \,\, dz = 2 \pi i[\frac{1-i}{2}] = \pi i(1-i) $

(iii) |z+1-i| = 2

For centre (z+1-i) = 0, z = -1+i

Therefore, centre = (-1,1), r = 2

Therefore, the poles are a(-1,2) and B(-1-2)

d(Ac) = $ \sqrt{(-1+1)^2 + (1-2)^2} = \sqrt{(-1)^2} = 1 \lt 2 $

Therefore, A lies inside the circle.

d(Bc) = $ \sqrt{(-1+1)^2 + (-2-1)^2} = \sqrt{(-3)^2} = 3 \gt 2 $

Therefore, B lies outside the circle.

Residue of f(z) at z = -1+2i is

$ \lim_{z \to (-1+2i)} (z+1-2i)[\frac{z-1}{(z+1-2i)(z+1+2i)}] \\ = \frac{-1+2i-1}{-1+2i+1+2i} = \frac{-2+2i}{4i} = \frac{-2(1+i)}{-4} = \frac{1}{2}(1+i) $

$ \therefore \int_c \frac{z-1}{z^2+2z+5} = 2 \pi i (\frac{1+i}{2}) = \pi i (1+i) $

ADD COMMENTlink
written 17 days ago by gravatar for Manan Bothra Manan Bothra0
Please log in to add an answer.


Use of this site constitutes acceptance of our User Agreement and Privacy Policy.