× Close
Join the Ques10 Community
Ques10 is a community of thousands of students, teachers, and academic experts, just like you.
Join them; it only takes a minute
Sign up
Question: Eigen values of unitary matrix are of unit modules
0

Subject: Applied Mathematics 4

Topic: Matrices

Difficulty: Low

m4m(64) • 88 views
ADD COMMENTlink
modified 12 weeks ago  • written 12 weeks ago by gravatar for manasahegde234 manasahegde23420
0

Let A be a unitary matrix

$A A^\theta=A^\theta A=I$ (1)

Let $\lambda$ be any eigen value of A

To prove that $\lambda$ is of unit modulus i.e $\mid \lambda \mid=1$

As $\lambda$ is an eigen value of A then there exist $X\neq$0 such that

$(AX-\lambda I)X=0$

$AX-\lambda X=0$

$AX=\lambda X$ (2)

$(AX)^\theta=(\lambda X)^\theta$

$X^\theta A^\theta= \lambda^\theta X^\theta$

$X^\theta A^\theta=(\bar \lambda^\theta) \prime X^\theta$

$X^\theta A^\theta=(\bar \lambda^\theta) X^\theta$

post multiplying by A on both sides, we get,

$X^\theta A^\theta A=(\bar \lambda^\theta) X^\theta A $

$X^\theta I= \bar \lambda X^\theta A$

post multiplying by X on both sides we get,

$X^\theta I X= \bar \lambda X^\theta A X$

$X^\theta X= \bar \lambda X^\theta \lambda X$ from (2)

$X^\theta X= \bar \lambda X^\theta \lambda X$

$-X^\theta X +\bar \lambda X^\theta \lambda X=0$

$(\bar \lambda \lambda -1) X^\theta X=0$

As $X\neq0$ $X^\theta X\neq0$ $\bar \lambda-1=0$

$\bar \lambda \lambda=1$

${\mid \lambda^ \mid}^2=1$

$\mid \lambda \mid=1$

Therefore, eigen values of unitary matrix are of unit modulus

ADD COMMENTlink
written 12 weeks ago by gravatar for manasahegde234 manasahegde23420
Please log in to add an answer.


Use of this site constitutes acceptance of our User Agreement and Privacy Policy.