× Close
Join the Ques10 Community
Ques10 is a community of thousands of students, teachers, and academic experts, just like you.
Join them; it only takes a minute
Question: If lambda is eigen value of A then prove that (lambda)^n is eigen value of A^n
0

Subject: Applied Mathematics 4

Topic: Matrices

Difficulty: Low

m4m(64) • 56 views
 modified 11 weeks ago  • written 11 weeks ago by
0

Let $\lambda$ be an eigen value of $A^n$.

Then there exists $X\neq0$ such that

$(A-\lambda I)X=0$

$AX-\lambda X=0$

$AX= \lambda X$ (1)

Post multiplying by A we get,

$A^2X=\lambda A X$

$A^2X=\lambda \lambda X$ from (1)

$A^2X=\lambda^2 X$

$\lambda^2$ is eigen value of $A^2$ and eigen vector corresponding to $\lambda^2$ is X.

Again pre multiplying by A,

$A^3X=\lambda^2 A X$

$A^3X=\lambda^2 \lambda X$

$A^3X=\lambda^3 X$

$\lambda^3$ is eigen value of $A^3$ and X is corresponding eigen vector. If we proceed in same manner then, we get,

$A^nX=\lambda^nX$

$\lambda^n$ is eigen value of $A^n$ and X is corresponding eigen vector.