× Close
Join the Ques10 Community
Ques10 is a community of thousands of students, teachers, and academic experts, just like you.
Join them; it only takes a minute
Sign up
Question: Analyse pin-joint frame by flexibility Method AE=constant
0

Subject :- Structural Analysis II

Title :- Analysis of Indeterminate truss

Difficulty :- Hard

enter image description here

myposts sa2(75) • 28 views
ADD COMMENTlink
modified 10 days ago  • written 10 days ago by gravatar for Mayank Aggarwal Mayank Aggarwal0
0

Degree of static indeterminacy :-

$D_{SE}$ = r-3 = 4-3 = 1

$D_{Si}$ = M-(2j-3) = 9(2(6)-3) = 0

$D_S$ = 1+0 = 1

Selecting redundant force(R)

Let R = $H_E$(->)

Convert hinged int roller

P-Analysis:

enter image description here

Σ$M_A$ =0(+ve)

203 + 407 - $V_E$*7 =0

Σ$F_Y$ =0(+VE)

$V_A$ - 0 + 48.57 =0

$V_A$ = -8.54KN

Joint A:-

enter image description here

Σ$F_Y$ =0(+ve)

-8.57 + $P_{AC}$Sin(36.86) =0

$P_{AC}$ = 14.28KN (T)

Σ$F_Y$ =0(+ve)

$P_{AF}$ - 20 +(14.28cos38.86) =0

$P_{AF}$ = 8.57KN (T)

Joint E:-

enter image description here

Σ$F_Y$=0(+ve)

48.57 - 40 + $P_{EC}$sin45 =0

$P_{EC}$ = -12.11KN

$P_{EC}$ = 12.11 KN(C)

K-Analysis:

enter image description here

Table:-

Member P K L PKL $K^2$L R RK $P_f$=P+PK
AB 0 0 3 0 0 8.57 0 0
BC -20 0 4 0 0 8.57 0 -20
CD 0 0 3 0 0 8.57 0 0
DE -40 0 3 0 0 8.57 0 40
EF 8.57 1 3 25.71 3 8.57 -8.57 0
FA 8.57 1 4 34.28 4 8.57 -8.57 0
AC 14.28 0 5 0 0 8.57 0 14.28
CE -12.11 0 4.24 0 0 8.57 0 -12.11
CF 0 0 3 0 0 8.57 0 0
Σ59.99 7

R = -[$\frac{\frac{ΣPKL}{AE}}{\frac{K^2L}{AE}}$]

= -[$\frac{60}{7}$] = -8.57

R = i.e = -8.57KN

He= 8.57KN<-

Actual $H_A$ = 20-8.57

$H_A$ = 11.43KN

ADD COMMENTlink
written 10 days ago by gravatar for Mayank Aggarwal Mayank Aggarwal0
Please log in to add an answer.


Use of this site constitutes acceptance of our User Agreement and Privacy Policy.