0
3.5kviews
5] c)ii) show that $ilog(\frac{x-i}{x+i}) = \pi - 2tan^{-1}x$
1 Answer
0
668views

we have $log(x+i) = ½ log⁡(x^2+1) + itan^{-1}⁡\frac{1}{x}$

and $log(x-i) =½ log⁡(x^2+1) –itan^{-1}⁡\frac{1}{x}$

$\frac{log((x-i)}{(x+i))} = log(x-i) - log(x+i)$

$ = -2itan^{-1}⁡\frac{1}{x} = -2i(π/2–tan^{-1}⁡x )$

$∴log\frac{((x-i)}{(x+i))} = -i(π - 2 tan^{-1}⁡x )$

$∴i log(\frac{(x-i)}{(x+i)}) = (π - 2tan^{-1}⁡x )$ .

Please log in to add an answer.