0
3.2kviews
Write short note on CCITT Group3 1D.
1 Answer
1
131views

Group 3 One-Dimensional encoding (G31D) is a variation of the Huffman keyed compression scheme. A bi-level image is composed of a series of black-and-white 1-bit pixel runs of various lengths (1 = black and 0 = white). A Group 3 encoder determines the length of a pixel run in a scan line and outputs a variable-length binary code word representing the length and color of the run. Because the code word output is shorter than the input, pixel data compression is achieved.

The run-length code words are taken from a predefined table of values representing runs of black or white pixels. This table is part of the T.4 specification and is used to encode and decode all Group 3 data.

The size of the code words were originally determined by the CCITT, based statistically on the average frequency of black-and-white runs occurring in typical type and handwritten documents. The documents included line art and were written in several different languages. Run lengths that occur more frequently are assigned smaller code words while run lengths that occur less frequently are assigned larger code words.

In printed and handwritten documents, short runs occur more frequently than long runs. Two- to 4-pixel black runs are the most frequent in occurrence. The maximum size of a run length is bounded by the maximum width of a Group 3 scan line.

Run lengths are represented by two types of code words: makeup and terminating. An encoded pixel run is made up of zero or more makeup code words and a terminating code word. Terminating code words represent shorter runs, and makeup codes represent longer runs. There are separate terminating and makeup code words for both black and white runs.

Pixel runs with a length of 0 to 63 are encoded using a single terminating code. Runs of 64 to 2623 pixels are encoded by a single makeup code and a terminating code. Run lengths greater than 2623 pixels are encoded using one or more makeup codes and a terminating code. The run length is the sum of the length values represented by each code word.

Here are some examples of several different encoded runs:

A run of 20 black pixels would be represented by the terminating code for a black run length of 20. This reduces a 20-bit run to the size of an 11-bit code word, a compression ratio of nearly 2:1. This is illustrated in Figure 9-7, a.

A white run of 100 pixels would be encoded using the makeup code for a white run length of 64 pixels followed by the terminating code for a white run length of 36 pixels (64 + 36 = 100). This encoding reduces 100 bits to 13 bits, or a compression ratio of over 7:1. This is illustrated in Figure 9-7, b.

A run of 8800 black pixels would be encoded as three makeup codes of 2560 black pixels (7680 pixels), a makeup code of 1088 black pixels, followed by the terminating code for 32 black pixels (2560 + 2560 + 2560 + 1088 + 32 = 8800). In this case, we will have encoded 8800 run-length bits into five code words with a total length of 61 bits, for an approximate compression ratio of 144:1. This is illustrated in Figure 1, c.

  • enter image description here

Advantages of CCITT G3 1D

• Very simple to implement.

• It is a standard for document imaging applications (Fax images).

Limitations:

• Useful only for low resolution images.

Please log in to add an answer.