1
243views
$$ Show\ that,\ (1+i)^{\mathrm{n}}+(1-i)^{\mathrm{n}}=2^{\frac{\mathrm{n}+2}{2}} \cos \frac{\mathrm{n} \pi}{4} \text {. } $$
1 Answer
0
2views

Solution:

Let, $1+i=r(\cos \theta+i \sin \theta)=r \cos \theta+i \sin \theta$ Equating real \& imaginary parts on both sides,

$$ r \cos \theta=1 \quad \& \quad r \sin \theta=1\\ $$

Now,

$ (r \cos \theta)^{2}+(r \sin \theta)^{2}=(1)^{2}+(1)^{2}\\ $

Now,

$ (\operatorname{rcos} \theta)^{2}+(\operatorname{rsin} \theta)^{2}=(1)^{2}+(1)^{2} \\ $

$ \Rightarrow \mathrm{r}^{2} \cos ^{2} \theta+\mathrm{r}^{2} …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.