## User: smitapn612

smitapn612 •

**0**- Reputation:
**0**- Status:
- New User
- Location:
- Last seen:
- 3 months, 1 week ago
- Joined:
- 4 months, 3 weeks ago
- Email:
- s*********@gmail.com

#### Academic profile

#### Posts by smitapn612

<prev
• 137 results •
page 1 of 14 •
next >

0

votes

1

answer

125

views

1

answers

...
$ \text{Let I(a) ] } = \int_0^{\infty} \frac{ tan^{-1}ax }{x(1+x^2)} dx $
$ \frac{dI}{da} = \int_0^{\infty} \frac{\partial}{\partial a} \frac{ tan^{-1}ax }{x(1+x^2)} dx $
$ = \int_0^{\infty} \frac{ 1}{x(1+x^2)} \frac{x }{(1+x^2)} dx $
$ = \frac{1}{1-a^2} \int_0^{\infty} [ \frac{ 1}{(1+x^2)} - ...

written 3 months ago by
smitapn612 •

**0**• updated 10 weeks ago by awari.swati831 •**160**0

votes

1

answer

118

views

1

answers

...
$Let I(a) = \int_0^{\infty} \frac{ (e^{-x} - e^{-ax}) }{xsecx} dx $
$ \frac{dI}{da} = \int_0^{\infty} \frac{\partial}{\partial a} \frac{ (e^{-x} - e^{-ax}) }{xsecx} dx $
$ = \int_0^{\infty} \frac{ x e^{-ax} }{xsecx} dx $
$ = \int_0^{\infty} e^{-ax} cosx dx $
$ = \left [ \frac{ e^{-ax} }{a^ ...

written 3 months ago by
smitapn612 •

**0**• updated 11 weeks ago by awari.swati831 •**160**0

votes

1

answer

130

views

1

answers

...
$ \text{ The region of integration is from y = 0 to y = } \sqrt{2x-x^2} \Longrightarrow x^2 + y^2 -2x = 0 \\ $
$ \text{x= 0 to x = 2} \\ $
$ \text{changing to polar coordinates x = } rcos\theta , y= rsin\theta, dxdy = rdrd\theta \\ $
$ I = \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{2cos\thet ...

written 3 months ago by
smitapn612 •

**0**• updated 10 weeks ago by awari.swati831 •**160**0

votes

1

answer

109

views

1

answers

...
$ \text{ The circle } x^2 + y^2 - 2ax = 0 \text { is a circle with center (a,0) and radius a. To change to polar coordinate.} \\ $
$ x= rcos\theta, y = rsin\theta \\ $
$ dxdy = rdrd\theta \\ $
$ \text {The equation of circle becomes r = acos}\theta \\ $
$ I = \int_{\theta=0}^{\frac{\pi}{2}} ...

written 3 months ago by
smitapn612 •

**0**• updated 10 weeks ago by awari.swati831 •**160**0

votes

1

answer

132

views

1

answers

...
$ \text { The limits of y are }y= x^2 \text{ and } y = 2-x \Longrightarrow x+y =2 \text { and x=0 to x=1} $
$ \text { The point of intersection of x+y = 2 and y = } x^2 $
$ x + x^2 = 2 \Longrightarrow x^2 +x-2 = 0 \Longrightarrow \text{x=1, x=-2} $
The region of integration is OABC. To chan ...

written 3 months ago by
smitapn612 •

**0**• updated 10 weeks ago by awari.swati831 •**160**0

votes

1

answer

118

views

1

answers

...
$ \text { The limits for y are 0 and 1 and for x are 0 and x = } \sqrt{1-y^2}) \Longrightarrow x^2 = 1-y^2 \Longrightarrow x^2 + y^2 = 1 \\ $
$ \text{ Hence, the region of integration is the first quadrant of the circle} x^2 + y^2 =1.
\text{If we change the order of integration,y varies from 0 t ...

written 3 months ago by
smitapn612 •

**0**• updated 10 weeks ago by awari.swati831 •**160**0

votes

1

answer

163

views

1

answers

...
$ \text { The region of integration is bounded by x = 0 i.e. the y-axis } \\ $
$ x = \sqrt{1-4y^2} \Longrightarrow x^2 = 1- 4y^2 \\ $
$ x^2 + \frac{y^2} {\frac{1}{4}} = 1 \\ $
$ \text { It is an ellipse with semi major axis 1 and semi minor axis } \frac{1}{2} \text {y = 0 and y = } \frac{1}{2} ...

written 3 months ago by
smitapn612 •

**0**• updated 10 weeks ago by awari.swati831 •**160**0

votes

1

answer

135

views

1

answers

...
$ \text{ The point of intersection r =} 2sin\theta \text{ and r = } 2cos\theta \\ $
$ tan\theta = 1 \Longrightarrow \theta = \frac{\pi}{4} \\ $
$ Area_1 = \int_{\theta = 0}^\frac{\pi}{4} \int_{r= 0}^{ 2sin\theta} r dr d\theta\\ $
$ = \int_{\theta = 0}^\frac{\pi}{4} \left[\frac{r^2}{2} \right] ...

written 3 months ago by
smitapn612 •

**0**• updated 10 weeks ago by awari.swati831 •**160**0

votes

1

answer

144

views

1

answers

...
$ \text { The two parabola's intersect at O(0,0) and A (4,4).} \\ $
$ \text {Point of intersection : } \\ $
$ y^2 = 4x , x^2 = 4y \\ $
$ x= \frac{y^2}{4} \\ $
$ x^2 = 4y \\ $
$ \frac { y^4} {16} = 4y \\ $
$ y^4 = 64 y \\ $
$ y(y^3- 64) = 0 \\ $
$ y= 0 , y^3-64 = 0 \text { i.e. } y= 4\\ ...

written 3 months ago by
smitapn612 •

**0**• updated 10 weeks ago by awari.swati831 •**160**0

votes

1

answer

126

views

1

answers

...
$ \text { Let O (0,0), A (1,1), B (0,1) be the vertices of the triangle OAB.} \\ $
$ \text { The equation of the line OA is} \\ $
$ \frac{x-0}{0-1} = \frac{y-0}{0-1} \text{ i.e. } x= y \\ $
$ \text {Now consider a strip parallel to x-axis } \\ $
$ \int_{y=0}^{1} \int_{x=0}^{y} \frac{2y^5x} {\ ...

written 3 months ago by
smitapn612 •

**0**• updated 10 weeks ago by awari.swati831 •**160**#### Latest awards to smitapn612

Centurion
3 months ago,
created 100 posts.

Rising Star
3 months ago,
created 50 posts within first three months of joining.

Site

- Publications
- Advertise
- RSS
- Stats

Use of this site constitutes acceptance of our User
Agreement
and Privacy
Policy.