State any five DFT properties.

Mumbai University > Computer Engineering > Sem 7 > Digital Signal Processing

Marks: 10 Marks

Year: May 2016

1 Answer

1. Shifting Property

If $x(n) \leftarrow FT\rightarrow x(k) OR x(n) \leftarrow FT\rightarrow X(\omega)$

Then, $x(n-m)\leftarrow FT\rightarrow W_N^{mk}.x(k)$

i.e, $x(n-m)\leftarrow FT\rightarrow e^{-j\omega k } X(\omega)$

& $x(n+m) \leftarrow FT\rightarrow W_N^{-mk}.x(k)$

Shifting property states that when a signal is shifted by m samples then the magnitude spectrum is unchanged but the phase spectrum is changed by amount $(-\omega k)$.

2. Frequency Shifting

$W_N^{mn}.x(k) \leftarrow FT\rightarrow x(k+m) \\ W_N^{-mn}.x(k) \leftarrow FT\rightarrow x(k-m)$

3. Conjugate Property

$x(n) \leftarrow FT\rightarrow x(k) \\ x*(n) \leftarrow FT\rightarrow x*(-k)$

4. Symmetric Property

$x(n) \leftarrow FT\rightarrow x(k)$

If x(n) = x(-n)

Then x(k) = x*(N-k)

5. Convolution Property

If, $x_1(n) \leftarrow FT\rightarrow x_1(k) \& x_2(n) \leftarrow FT\rightarrow x_2(k)$

Then, $x_1(n) * x_2(n) \leftarrow FT\rightarrow x_1(k).x_2(k)$

Convolution of two signals in time domain is equivalent to multiplication in frequency domain.

Please log in to add an answer.

Continue reading...

The best way to discover useful content is by searching it.