Applied Mathematics - 3 : Question Paper Dec 2016 - Mechanical Engineering (Semester 3) | Mumbai University (MU)

Applied Mathematics - 3 - Dec 2016

Mechanical Engineering (Semester 3)

(1) Question 1 is compulsory.
(2) Attempt any three from the remaining questions.
(3) Assume data if required.
(4) Figures to the right indicate full marks.
1(a) Evaluate $$\int _c(\bar{z}+2z)dz $$ along the circle x2+y2=1(5 marks) 1(b) Evaluate the integral using Laplace Transform $$\int ^\infty _0 e^{-t}\left ( t\sqrt{1+\sin t} \right )dt$$(5 marks) 1(c) Determine the analytic function whose real part is u = r3 sin 30.(5 marks) 1(d) A rod length l has its ends A and B kept at 0°C and 100 respectively until steady state conditions prevail. If the tempreature at B is reduced sufddenly to 0°C and kept so while that of A is maintained. Find the tempreature u(x,t) at a distance from A and at time t.(5 marks) 2(a) Find complex from of Fourier series of f(x)=e2x in (0,2)(6 marks) 2(b) Find the orthogonal trajectory of the family of curves given by 2x-x3+3xy2=a(6 marks) 2(c) Using Bender Schmidt method solve
$$\frac{\partial^2u }{\partial x^2}-\frac{\partial u}{\partial t}$$ = 0 subject to the conditions u (o,t)=0,
u(1,t) =0,
u(x,0) = sinπx,
0≤x≤1. Assume h=0.2
(8 marks)
3(a) Find k such that $$\frac{1}{2}\log \left ( x^2+y^2 \right )+i\tan^{-1}\left ( \frac{kx}{y} \right )$$ is analytic(6 marks) 3(b) Evaluate $$\int \frac{1}{\left ( z^3-1 \right )^2}$$dz where C is the circle |z-1|=1(6 marks) 3(c) Show that the set of function
$$\left \{ Sin\left ( \frac{\pi x}{2L} \right ),Sin\left ( \frac{3\pi x}{2L} \right ),Sin\left ( \frac{5\pi x}{2L} \right )...... \right \}$$ form an orthogonal set over the interval [0, L]. Construct corresponding orthonormal set.
(8 marks)
4(a) Find Laplace Transform of the periodic function
$$\begin{Bmatrix} sin2t,0<1 &\frac{\pi }{2} \\ \\0,\frac{\pi }{2}\ltt &="" \lt\pi="" \end{bmatrix}f(t)="\left" (="" t+\pi="" \right="" )$$<="" a="">

(6 marks)
4(b) Find half range sine series for x sin x in (o,π)(6 marks) 4(c) Expand
$$f(z)=\frac{z^2-1}{z^2+5z+6}$$ around z=1
(8 marks)
5(a) Using residue theorem evaluate $$\oint _c\frac{e}{\left ( z^2+\pi ^2 \right )^2}dz$$ where C is |z|=4(6 marks) 5(b) Find Fourier expansion of f(x)=x+x2 in (-π,
π) and f(x+2π)=f(x)
(6 marks)
5(c) Find $ i)\ L\left ( e^{-4t}\int_{0}^{t} u\sin 3udu\right )\ \ ii) L^{-1}\left ( \frac{1}{s} log\left ( 1+\frac{1}{s^2} \right )\right ) $(8 marks) 6(a) Show that the function $w=\frac{4}{z} $/ transform the straight lines x=c in the z-plane into circles in the W-plane.(6 marks) 6(b) Solve using Laplace Transform$ R\frac{dQ}{dt}+\frac{Q}{C}=V $/, Q=0 when t=0(6 marks) 6(c) Solve the Laplace equation $\frac{\partial^2u }{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0 $/ for the following data by sucessive interations (Calculate first two interations)
(8 marks)


Continue reading

Find answer to specific questions by searching them here. It's the best way to discover useful content.

Find more