In following fig. sketch $V_x \ \&\ V_y$ as a function of $I_{Ref}$. If $I_{Ref}$ requires 0.5V to operate as a current source,what is its maximum value?

enter image description here

Subject: CMOS VLSI Design

Topic: CMOS analog building blocks

Difficulty: High

cvd • 685  views


we have,

$V_x = V_y....................(1)$

For, $M_1,\quad$ $V_{G{S_1}}=V_{D{S_1}}=V_x$

but, $I_{D_1}=\frac{1}{2}\mu_n C_{ox} (\frac{W}{L})_1(V_{G{S_1}}-V_{Th})^2$

$\therefore V_{G{S_1}}=\sqrt {\frac{2I_{D_1}}{[\mu_n C_{ox} (\frac{W}{L})_1]}}+V_{Th}$

$V_{G{S_1}}=\sqrt {\frac{2I_{Ref}}{[\mu_n C_{ox} (\frac{W}{L})_1]}}+V_{Th}$

$\therefore\ V_x=V_y=\sqrt {\frac{2I_{Ref}}{[\mu_n C_{ox} (\frac{W}{L})_1]}}+V_{Th}$

The graph nature will be shown as below :-

enter image description here

To find maximum value of $I_{Ref} :-$

We have,


$\quad \quad \quad=\sqrt {\frac{2I_{Ref}}{\mu_n C_{ox}}} [\sqrt{(\frac{L}{W})_0}+\sqrt{(\frac{L}{W})_1}]+V_{Th} +V_{Th}$

But, $V_{DD}-V_N=0.5..............(Given)$

$\therefore \ V_{DD}-\sqrt {\frac{2I_{Ref}}{\mu_n C_{ox}}} [\sqrt{(\frac{L}{W})_0}+\sqrt{(\frac{L}{W})_1}]-2V_{Th}=0.5 $

$\therefore \ I_{Ref},max=\frac{\mu_n C_{ox}}{2} \frac{(V_{DD}-0.5-2V_{Th})^2}{ [\sqrt{(\frac{L}{W})_0}+\sqrt{(\frac{L}{W})_1}]^2}$

Please log in to add an answer.

Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.


Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More