written 6.1 years ago by | modified 6.0 years ago by |
Line | F.B | B.B |
---|---|---|
AB | 188$^\circ$45' | 7$^\circ$45' |
BC | 118$^\circ$15' | 298$^\circ$15' |
CD | 346$^\circ$35' | 166$^\circ$30' |
DE | 337$^\circ$05' | 158$^\circ$10' |
EA | 293$^\circ$30' | 113$^\circ$00' |
To find the correct including angle
$\angle$A = F.B of AB – B.B of EA = 188$^\circ$45’ - 113$^\circ$00’= 75$^\circ$45’
$\angle$B = F.B of BC – B.B of AB = 118$^\circ$15’- 7$^\circ$45’= 110$^\circ$30’
$\angle$C = F.B of CD – B.B of BC = 346$^\circ$35’- 298$^\circ$15’= 48$^\circ$20’
$\angle$D = F.B of DE – B.B of CD = 337$^\circ$05’-166$^\circ$30’= 170$^\circ$35’
$\angle$E = F.B of EA – B.B of DE = 293$^\circ$30’-158$^\circ$10’= 135$^\circ$20’
Sum of all included angle = $\angle$A + $\angle$B + $\angle$C + $\angle$D + $\angle$E = 75$^\circ$45’ + 110$^\circ$30’ + 48$^\circ$20’ + 170$^\circ$35’ + 135$^\circ$20’ = 540$^\circ$30’
Theoretical sum= (2n – 4) × 90$^\circ$ = (2 × 5 – 4) × 90$^\circ$ = 540$^\circ$
Error = 540$^\circ$ - 540$^\circ$30’ = - 30’ (-ve error)
Error divide into five station = (- 30’ )/5 = - 6’ at each station
Find correct angle
$\angle$A = 75$^\circ$45’ - 6’ = 75$^\circ$39’
$\angle$B = 110$^\circ$30’ - 6’ = 110$^\circ$24’
$\angle$C =48$^\circ$20’ - 6’ = 48$^\circ$14’
$\angle$D = 170$^\circ$35’ - 6’ = 170$^\circ$29’
$\angle$E = 135$^\circ$20’ - 6’ = 135$^\circ$14’
To find correct bearing
- difference between F.B and B.B of BC is 180$^\circ$
BB Of AB = F.B of BC – $\angle$B (corrected angle) = 118$^\circ$15’ – 110$^\circ$24’ = 7$^\circ$51’ F.B Of AB = 7$^\circ$51’ + 180$^\circ$ = 187$^\circ$51’
BB Of EA = F.B of AB – $\angle$A (corrected angle ) = 187$^\circ$51’– 75$^\circ$39’= 112$^\circ$12’ F.B Of EA = 112$^\circ$12’+ 180$^\circ$ = 292$^\circ$12’
BB Of DE = F.B of EA – $\angle$E (corrected angle ) = 292$^\circ$12’– 135$^\circ$14’= 156$^\circ$58’
F.B Of DE = 156$^\circ$58’+ 180$^\circ$= 336$^\circ$58’
BB Of CD = F.B of DE – $\angle$D (corrected angle ) = 336$^\circ$58’– 170$^\circ$29’= 166$^\circ$29’
F.B Of CD = 166$^\circ$29’+ 180$^\circ$ = 346$^\circ$29’
BB Of BC = F.B of CD– $\angle$C (corrected angle ) = 346$^\circ$29’– 48$^\circ$14’= 298$^\circ$15’
Line | Incorrect | Incorrect included angle | -ve error | correct included error | Corrected | ||
---|---|---|---|---|---|---|---|
F.B | B.B | F.B | B.B | ||||
AB | 188$^\circ$45' | 7$^\circ$45’ | 75$^\circ$45’ | 6' | $\angle$A = 75$^\circ$39’ | 187$^\circ$51’ | 7$^\circ$51’ |
BC | 118$^\circ$15’ | 298$^\circ$15’ | 110$^\circ$30’ | 6' | $\angle$B= 110$^\circ$24’ | 110$^\circ$24’ | 298$^\circ$15’ |
CD | 346$^\circ$35’ | 166$^\circ$30’ | 48$^\circ$20’ | 6' | $\angle$C=48$^\circ$14’ | 48$^\circ$14’ | 166$^\circ$29’ |
DE | 337$^\circ$05’ | 158$^\circ$10’ | 170$^\circ$35’ | 6' | $\angle$D= 170$^\circ$29’ | 336$^\circ$58’ | 156$^\circ$58’ |
EA | 293$^\circ$30’ | 113$^\circ$00’ | 135$^\circ$20’ | 6' | $\angle$E= 135$^\circ$14’ | 292$^\circ$12’ | 112$^\circ$12’ |
$\sum$540$^\circ$30' | $\sum$30' | $\sum$540$^\circ$ |