0
2.5kviews
Derive an expression for optimum cutting speed and tool life for minimum cost and maximum production rate.

Also show that the optimum cutting speed for maximum production rate is always more than optimum cutting speed for minimum cost.

Subject: Production Process 2

Topic: Metal Cutting

Difficulty: Medium

1 Answer
0
36views

Calculation of different Cost elements:

Let ; D= Diameter of job in mm

L= length of the job in mm

f=feed in mm/rev

N= rotational speed.= $\frac{1000 V}{(π ×D}$

$t_m$ =machining speed of work piece. =$\frac{L}{f ×N}$

$t_h$= handling or loading time.

$K_1$= Operating cost.

$t_{c}$= tool changing time for one edge

We know that;

Cost of manufacturing one piece= handling cost per piece+ Machining cost per pc.+ Tool change cost per pc.+ Tool cost per pc ……..1

Handling Cost per pc.

Handling Cost per pc (Rs/pc)=$ t_h \times K_{1}$ = $t_h . K_{1}$………2

Machining cost per pc.

Machining cost per pc. = $t_{m}\times K_{1}$

=$K_1 . t_m$…………………3

=$K1. \frac{ L}{f ×N}$

= $K_1. \frac{L π D}{f ×1000 V}$

= $K_1 .\frac{L π D}{f \times 1000}\frac{1}{ V}$

= $K_1. \frac{K}{V}$ ………………………4

Tool change cost per pc.

$t_m$=machining time (min)

T=tool life (min)

Number of edges required to manufacture one piece = $\frac{t_m}{T}$

tool changing cost per pc. = $tc \times \frac{t_{m}}{T} \times K_{1}$

= $K_1 \times t_c \times \frac{t_{m}}{T}$ ……………..5

= $K_1 \times t_c \times \frac{K}{V}\times \frac{1}{T}$ …………6 (from eqn. 3 & 4)

Taylors tool life eqn.

$4VT^{n}$=C

∴ $T=\frac{C^{1⁄n}}{V^{1⁄n}}$ ……………7

put in eqn. 6

tool changing cost per pc. = $K_1\times t_c \times \frac{K}{V }×\frac{V^{1⁄n}}{C^{1⁄n}}$

=$ K_1 \times t_c \times \frac{K}{(C^{1⁄n}} \times V^{1⁄n} x V-1$

= $K_1 \times t_c \times \frac{K}{C^{1⁄n}} \times V^{\frac{1-n}{n}}$……….8

Tool cost per pc.

Let; $K_2$=tool cost per edge.

tool cost per piece = (no. of tool edges required to produce one pc.) x (tool cost per edge.)

= $\frac{t_m}{T} \times K_2$

= $ K_2 \times \frac{t_{m}}{T} $

=$K_2 x \frac{K}{C^{1⁄n}} × V^\frac{1-n}{n}$ ……….9

Expression of optimum cutting speed for minimum cost of production: from eqn. 1, 2, 4, 8, 9

Cost of manufacturing one piece= $t_h . K_1 + K_1. \frac{K}{V} + K_1 \times t_c \times \frac{K}{C^{1⁄n}} ×V^\frac{1-n}{n}+ K_2 x \frac{K}{C^{1⁄n}} ×V^\frac{1-n}{n}$= $ t_h . K_1 + K_1. \frac{K}{V} + \frac{K}{C^{1⁄n}} (K_1. t_c+ K_2) .V^\frac{1-n}{n}$

for min cost of production

$\frac{.d}{dV}$ (RHS)=0

$0+(-K_1. \frac{K}{V^2}) + \frac{K}{C^(1⁄n)}(K_1. t_c+ K_2) .V^\frac{1-2n}{n}$ = 0

⇛$V^\frac{1-2n}{n} .V^2= K_1 . C^{1⁄n} \frac{1}{(K_1 t_c+K_2)} . \frac{n}{1-n}$

⇛$V_{min}=C.[\frac{n}{1-n}×\frac{K_1}{K_1 t_c+K_2}]^n$

this is an eqn. of cutting speed for min cost of production.

To find corresponding tool life

$VT^n$=C

$T_{min}=[\frac{C}{V_min} ]^{\frac{1}{n}}$

$\left[\frac{c}{c[\frac{n}{1-n}\times \frac{K_{1}}{k_{1}t_{c}+k_{2}}]}\right]^{\frac{1}{n}}$

$T_{min}=\frac{n}{1-n} × \frac{K_1 t_c+K_2}{K_1}$

this is the eqn. for tool life for min cost of production

enter image description here

$ VT^{n}=C$

$T_{max}=[\frac{C}{V_{max}}]^{1/n}$

$T_{max}=\left[\frac{c}{c[\frac{1}{t_C}\times \frac{n}{1-n}]^{n}}\right]^{\frac{1}{n}}$

$T_{max}= \frac{t_c (1-n)}{n}$

this is the eqn. for tool life for max. Rate of production.

Please log in to add an answer.