prove that in metal cutting. How velocity = cutting velocity x chip thickness coefficient ?

enter image description here


$v_c$ = cutting velocity

$v_f$ = chip how velocity

$v_s$ = shear velocity

r = chip thickness coefficient

  • As in orthogonal cutting system

1) Every metal which is undergoing machining operation is considered as in compressible (i.e. no volumetric changes during machining)

$\therefore$ volume of material before machining = vol. after machining

$t_1$ $b_1$ $l_1$ = $t_2$ $b_2$ $l_2$ ........ $eq^n$ (01)

$t_1$ $b_1$ $v_c$ = $t_2$ $b_2$ $v_f$ ....... $eq^n$ (02)

2) width of the chip is assumed to be constant.

$\therefore$ $_b$1 = $b_2$ = b ......... $eq^n$ (03)

from $eq^n$ (01), (02) and (03)

As $_b$1 = $b_2$ = b

($\because$ r = $\frac{t1}{t2}$)

$\therefore$ $\frac{t1}{t2}$ = $\frac{l2}{l1}$ = r

similarly, $\frac{t1}{t2}$ = $\frac{vf}{vc}$ = r

$\therefore$ r = $\frac{t1}{t2}$ = $\frac{vf}{vc}$

r = $\frac{vf}{vc}$

$v_f = v_c \times r$ ..... Proved.

renu • 84  views
Please log in to add an answer.

Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.


Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More