0
1.6kviews
The sequence of numbers 0.63, 0.49, 0.24, 0.89 and 0.71 has been generated.

Use the Komogorov-Smirnov test with $\alpha$= 0.05 to determine if the hypothesis that the numbers are uniformly distributed on the interval[0,1] can be rejected. Use D$_{0.05}$= 0.565

1 Answer
0
6views

K-S Test

  1. Define the hypothesis for testing the uniformity

    $H_0: R_i \sim \cup [0,1]$

    $H_i: R_i \not{\sim} \cup [0,1]$

  2. Rank data in increasing order

    $0.24 \le 0.49 \le 0.63 \le 0.71 \le 0.89$

  3. Compute $D^+$ and $D^-$

i 1 2 3 4 5
$R_i$ 0.24 0.49 0.63 0.71 0.89
$\frac{i}{N}$ 0.17 0.33 0.67 0.83 1.00
$\frac{i}{N} - R_i$ - - 0.04 0.12 0.11
$R_{i}-\frac{(i-1)}{N}$ 0.24 0.32 0.13 0.04 0.06

$\therefore D^+ = \text{max {0.04, 0.12, 0.11}} = 0.12$

and $\therefore D^- = \text{max {0.24, 0.32, 0.13, 0.04, 0.06}} = 0.32$

  1. Compute D

    $\begin{aligned} D &=\max \left(D^{+}, D^{-}\right) \\ &=\max (0 \cdot(2,0 \cdot 32)\\ &=0.32 \end{aligned}$

  2. Determine the critical value $D_x$ for specified level of signifance $\alpha = 0.05$ and sample size $N=5$

$$ D_{0.05, 5} = 0.565 \text{ (given) } $$

  1. Since $D=0 \cdot 32 \lt D_{0.05,5}=0.565 \Rightarrow H_{0}$ is not rejected.

    From this, we can say that given set of random numbers are uniformly distributed.

Please log in to add an answer.

Continue reading...

The best way to discover useful content is by searching it.

Search