0
1.9kviews
Relation between circular and hyperbolic function : If $\alpha$ + $\iota\beta$ = tanh($\chi$ + $\iota \frac{\pi}{4}$) , prove that $\alpha^2 + \beta^2$ = 1
2 Answers
0
3views

We know that

tanh($\chi$ + $\iota \frac{\pi}{4}$) =$ \frac{tanh \; \chi \; \; + \; \; tanh(\iota \frac{\pi}{4}) }{ 1 \; \; - \; \; tanh \; \chi \; \cdot \; tanh(\iota \frac{\pi}{4}) }$

= $ \frac {tanh \; \chi \; + \; \iota \; tanh( \frac{\pi}{4}) }{ 1 - \; \iota \; tanh \; \chi \; \; \cdot \; \; tanh( \frac{\pi}{4}) } $ $ \; \; \; \; \; \; \; \ldots\ldots$ ($ \because \; tanh(\iota\theta) = \iota \; tan \theta $)

= $ \frac {tanh \; \chi \; + \; \iota }{ 1 - \; \iota \; tanh \; \chi } $ $ \; \; \; \; \; \;\; \; \; \; \; \cdots\cdots$ ($\because \; tanh( \frac{\pi}{4} = 1 $)

$\therefore$ tanh($\chi$ + $\iota \frac{\pi}{4}$) = $\frac{(tanh \; \chi \; + \; \iota) ( 1 + \; \iota \; tanh \; \chi) }{( 1 - \; \iota \; tanh \; \chi) ( 1 + \; \iota \; tanh \; \chi)} $

= $ \frac{ tanh \; \chi \; \; + \; \; \iota \; tanh^2 \; \chi \; \; + \; \; \iota \; \; + \; \; \iota^2 \; \; tanh \; \; \chi }{ 1 \; \; - \; \; \iota^2 \; tanh^2 \; \chi} $

= $ \frac{ tanh \; \chi \; \; + \; \; \iota \; ( tanh^2 \; \chi \; \; + \; \; 1 ) \; \; - \; \; tanh \; \; \chi }{ 1 \; \; + \; \; tanh^2 \; \chi} $ $ \; \; \; \; \; \; \; \cdots\cdots$ ($\because \; \iota^2 = -1 $)

= $ \frac{ \iota \; ( tanh^2 \; \chi \; \; + \; \; 1 ) }{ 1 \; \; + \; \; tanh^2 \; \chi} $

= $\iota$ = 0 + $\iota$

Comparing with $\alpha$ + $\iota\beta$ , we get $\alpha$ = 0 and $\beta$ = 1

$ \therefore \alpha^2 \; + \; \beta^2 \; \; = \; \; 0^2 \; + \; 1^2 \; \; = \; \; 1 $

(Hence Proved.)

Please log in to add an answer.