0
46kviews
Reduce matrix A to normal form and find its rank where $ \\ \; \\ A=\left[ \begin{array}{cccc} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{array} \right] $
1 Answer
1
4.1kviews

A = $ \left[ \begin{array}{ccc} 1& 2& 3& 2\\ 2& 3& 5& 1\\ 1& 3& 4& 5 \end{array}\right] \\ \; \\ \; \\ \; \\ R_2 \rightarrow R_2-2R_1 \\ R_3 \rightarrow R_3-R_1 \\ \; \\ \; \\ A\;=\; \left[ \begin{array}{ccc} 1& 2& 3& 2\\ 0& -1& -1& -3\\ 0& 1& 1& 3 \end{array}\right] \\ \; \\ \; \\ \; \\ R_3 \rightarrow R_3+R_2 \\ R_1 \rightarrow R_1+2R_2 \\ \; \\ \; \\ A\;=\; \left[ \begin{array}{ccc} 1& 0& 1& -4\\ 0& -1& -1& -3\\ 0& 0& 0& 0 \end{array}\right] \\ \; \\ \; \\ \; \\ C_3 \rightarrow C_3-C_1 \\ C_4 \rightarrow C_4+4C_1 \\ \; \\ \; \\ A\;=\; \left[ \begin{array}{ccc} 1& 0& 0& 0\\ 0& -1& -1& -3\\ 0& 0& 0& 0 \end{array}\right] \\ \; \\ \; \\ \; \\ C_2 \rightarrow C_2-C_3 \\ C_4 \rightarrow C_4-3C_3 \\ \; \\ \; \\ A\;=\; \left[ \begin{array}{ccc} 1& 0& 0& 0\\ 0& 0& -1& 0\\ 0& 0& 0& 0 \end{array}\right] \\ \; \\ \; \\ \; \\ C_3 \rightarrow C_2/-1 \\ \; \\ \; \\ A\;=\; \left[ \begin{array}{ccc} 1& 0& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 0 \end{array}\right] \\ \; \\ \; \\ \; $

Thus matrix A has been reduced to normal form

The number of non-zero rows in normal form of matrix A is 2

Therefore, the rank of the matrix is 2

Please log in to add an answer.