Design the streax reinforcement for the rectangular beam of dimensions $(350 \times 500)$ mm (effective) provided with the tensile reinforcement comprising $4- 25$ mm diameter.

The beam is subjected to a maximum factored shear force of $400$ KN. The materials are the concrete of grade M20 and TOR steel. Refer table for the values of allowable shear stress(Zc)

numericals • 780  views

$$b = 350 mm $$ $ d = 500 mm \\ V_{UD} = 500 KN \\ F_ck=20N/mm^2\\ f_y=415 N/mm^2\\ Ast=4-25 mm \phi=1964mm^2\\ Z_uv=\dfrac {V_{UD}}{b\times d}=\dfrac {400 \times 10^3}{350\times 500}=2.28 N/mm^2 \lt 2.8 N/mm^2\\ pt=\dfrac {100\times Ast}{b\times d}=\dfrac {100\times 1964}{350\times 500}=1.12\%$

shear stress in concrete (Zuc):-

By interpolation

enter image description here

$$\dfrac {0.67-0.62}{1.25-1}=\dfrac {(Zuc-0.62)}{1.12-1}$$ $ \therefore Z_{uc}=0.64 N/mm^2\\ V_{uc}=Z_{uc}bd=0.64 \times 350\times500=112 KN \\ V_{u\space min}=0.4bd=0.4\times350\times500=70 KN \\ Assume \space \phi_s=10mm \\ a_{sv}=2\times\dfrac \pi4 \times10^2=157 mm^2\\ V_{uD}= 400 KN\\ V_{uc}+V_{u\space min}=112+70=182 KN\\ here \space V_{uD} \gt V_{uc}+ V_{u\space min}$

Design and provide shear reinforcement

$$V_{us}=V_{uD}-V_{uc}=400-112=288KN $$

Spacing :

$S_1=\dfrac {0.87f_ya_{sv}d}{V_{us}}\\ S_1=\dfrac {0.87\times415\times157\times500}{288\times10^3}=98.4\\ S_2=0.75d=0.75\times500=375 mm \\ S_3=300 mm$

Hence $10$ mm $\phi2$ strirups at $90$ mm c/c

enter image description here

Please log in to add an answer.

Continue reading

Find answer to specific questions by searching them here. It's the best way to discover useful content.

Find more