Random Signal Analysis : Question Paper Dec 2015 - Electronics & Telecomm. (Semester 5) | Mumbai University (MU)

Random Signal Analysis - Dec 2015

Electronics & Telecomm. (Semester 5)

(1) Question 1 is compulsory.
(2) Attempt any three from the remaining questions.
(3) Assume data if required.
(4) Figures to the right indicate full marks.
1 (a) Explain concept of power spectral density.(5 marks) 1 (b) State and prove Central Limit Theorem.(5 marks) 1 (c) Explain properties of cross correlation function.(5 marks) 1 (d) State and prove Baye's theorem.(5 marks) 2 (a) Box 1 contains 5 white balls and 6 black balls. Box 2 contains 6 white & 4 black balls. A box is selected at random and then a ball is chosen at random from the selected Box
i) What is the probability that the ball chosen will be a white ball
ii) Given that the ball chosen is white what is the probability that came from box1.
(10 marks)
2 (b) Give the properties of CDF, PDF and PMF.(10 marks) 3 (a) Explain concept of conditional probability and properties of conditional probability.(10 marks) 3 (b) Explain what do you mean by?
i) Deterministic system
ii) Stochastic system
iii) Memoryless system
(3 marks)
3 (c) Prove that if input to memoryless system is strict sense stationary (SSS) process then output is also strict sense stationary.(7 marks) 4 (a) Explain Random process, define ensemble mean, Auto correlation and Auto covariance of the process in terms of indexed random variables in usual mathematical forms.(10 marks) 4 (b) Let Z=X+Y. Determine pdf of Z fz (Z).(10 marks) 5 (a) State and prove Chapman Kolmogorov equation.(10 marks) 5 (b) Explain Chebyshev's Inequality with suitable example.(10 marks) 6 (a) The joint probability density function of two random variables is given by $$ F_{xy}(x, y)=15 \ e^{-3x-3y}; \ \ x\ge 0, y\ge 0 $$ i) Find the probability that x<2 and y>0.2
ii) Find the marginal densities of X and Y
iii) Are X and Y Independent?
iv) Find E(x/y) and E(y/x).
(10 marks)
6 (b) Write short notes on following special distributions
i) Poisson distributions
ii) Rayleigh distributions
iii) Gaussian distributions
(10 marks)


Continue reading

Find answer to specific questions by searching them here. It's the best way to discover useful content.

Find more