| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > Electronics and Telecommunication > Sem 4 > Applied Maths 4
Marks: 6M
Year: Dec 2015
| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > Electronics and Telecommunication > Sem 4 > Applied Maths 4
Marks: 6M
Year: Dec 2015
| written 9.4 years ago by |
The quadratic form can be written in matrix notation as
$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
i.e. $X'AX$
Now we write $A = IAI \\ \therefore \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \therefore R_{1} + R_{2} ,C_{1} + C_{2} \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & \frac{1}{2} & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ R_{3} - R_{1}, C_{3} - C_{1} \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \\ R_{2} - \frac{1}{2} R_{1}, C_{2} - \frac{1}{2}C_{1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{4} & 0 \\ 0 & \frac{1}{2} & - 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -1 & -1 & 1 \end{bmatrix} A \begin{bmatrix} 1 & -\frac{1}{2} & -1 \\ 1 & \frac{1}{2} & -1 \\ 0 & 0 & 1 \end{bmatrix}$
Thus $B = P'AP$
This means the quadratic form
$X'AX =ox^2 + oy^2 + oz^2 + xy + yz + xz$
will be transformed to
$Y'BY = U^2 - \frac{1}{4}V^2 - W^2$
i.e. $x = U - \frac{1}{2}V - W \\ y = U + \frac{1}{2}V - W \\ z = W$