Applied Mathematics 3 : Question Paper Dec 2014 - Computer Engineering (Semester 3) | Mumbai University (MU)

Applied Mathematics 3 - Dec 2014

Computer Engineering (Semester 3)

(1) Question 1 is compulsory.
(2) Attempt any three from the remaining questions.
(3) Assume data if required.
(4) Figures to the right indicate full marks.
1 (a) Find the Laplace Transform of sint cos2t cosht.(5 marks) 1 (b) Find the Fourier series expansion of f(x)=x2 (-π, π)(5 marks) 1 (c) Find the z-transform of $\left ( \dfrac {1}{3} \right )^{|K|} $ (5 marks) 1 (d) Find the directional derivative of 4xz2+x2yz at (1, -2, -1) in the direction of 2i-j-2k(5 marks) 2 (a) Find an analytic function f(z) whose real part is ex (xcosy-ysiny)(6 marks) 2 (b) Find inverse Laplace Transform by using convolution theorem $$ \dfrac {1}{(s-3)(s+4)^3} $$(6 marks) 2 (c) Prove that $$ \overline{F} = (6xy^2 - 2z^3) \overline{i} + (6x^2 y +2yz) \overline{j}+ (y^2 - 6z^2 x) \overline {k} $$ is a conservative field. Find the scalar potential ? such that ??=F. Hence find the workdone by F in displacing a particle from A(1,0,2) to B(0,1,1) along AB.(8 marks) 3 (a) Find the inverse z-transform of $$ f(z)= \dfrac {z^3}{(z-3)(z-2)^2} $$
i) 2<|z|<3 ii) |z|>3
(6 marks)
3 (b) Find the image of the real axis under the transformation $$ w= \dfrac {2}{z+i} $$(6 marks) 3 (c) Obtain the Fourier series expansion of $$ \begin {align*}f(x)&=\pi x;0\le x \le 1 \\ &= \pi (2-x); 1 \le x \le 2 \end{align*} $$ Here deduce That $$ \dfrac {1}{1^2} + \dfrac {1}{3^2}+ \cdots \ \cdots = \dfrac {\pi^2}{8} $$(8 marks) 4 (a) Find the Laplace Transform of $$ \begin {align*}f(t) & = E; 0 \le t \le p/2 \\ & = E; p/2 \le t \le p, \end{align*} f(t+p)= f(t) $$(6 marks) 4 (b) Using Green's theorem evaluate $$ \int_c \dfrac {1}{y} dx + \dfrac {1}{x} dy where c is the boundary of the region bounded by x=1, x=4, y=1, y=√x\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt4 (c)\lt/b\gt Find the Fourier integral for $$ f(x)=\left{\begin{matrix} 1-x^2 &0 \le x \le 1 \0 & x \ge 1 \end{matrix}\right. $$   Hence Evaluate $$ \int^\infty_0 \dfrac {\lambda \cos \lambda - \sin \lambda}{\lambda^3} \cos \left ( \dfrac {\lambda}{2} \right )d \lambda $$ \lt/span\gt\ltspan class='paper-ques-marks'\gt(8 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (a)\lt/b\gt If \ltspan style="text-decoration:overline"\gtF \lt/span\gt=x\ltsup\gt2\lt/sup\gt \ltspan style="text-decoration:overline"\gti \lt/span\gt+ (x-y)\ltspan style="text-decoration:overline"\gtj\lt/span\gt+ (y+z)\ltspan style="text-decoration:overline"\gtk \lt/span\gt moves a particular from A(1,0,1) to B(2,1,2) along line AB. Find the work done.\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (b)\lt/b\gt Find the complex form of fourier series f(x)= sinhax(-l,l).\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (c)\lt/b\gt Solve the differential equation using Laplace Transform. (D\ltsup\gt2\lt/sup\gt+2D+5)y=e\ltsup\gt-t\lt/sup\gt sint y(0)=0 y'(0)=1\lt/span\gt\ltspan class='paper-ques-marks'\gt(8 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (a)\lt/b\gt $$ If \ \int^\infty_{0} e^{-2t} sn(t+\alpha)\cos (t-\alpha) dt = \dfrac {3}{8} $$ find the value of α.\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (b)\lt/b\gt $$ \iint_s (y^2 z^2 \overline{i} + z^2 x^2 \overline {j}+ z^2 y^2 \overline{k})\cdot \overline n ds $$ where is the hemisphere x\ltsup\gt2\lt/sup\gt+y\ltsup\gt2\lt/sup\gt+z\ltsup\gt2\lt/sup\gt=1 above xy-plane and bounded by this plane.\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (c)\lt/b\gt Find Half range sine series for f(x)=lx-x\ltsup\gt2\lt/sup\gt (0, l) Hence prove that $$ \dfrac {1}{1^6}+ \dfrac {1}{3^6}+ \cdots \cdots = \dfrac {\pi ^6}{960} $$(8 marks)


Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.


Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More