0
1.5kviews
Optimize $z = x_{1}^2 + x_{2}^2 + x_{3}^2 - 6x_{1} - 8x_{2} - 10x_{3}$
1 Answer
0
14views

Let f = ${\boldsymbol{x}}^{\boldsymbol{2}}_{\boldsymbol{1}}$ + ${\boldsymbol{x}}^{\boldsymbol{2}}_{\boldsymbol{2}}$+ ${\boldsymbol{x}}^{\boldsymbol{2}}_{\boldsymbol{3}}$ - $\boldsymbol{6}{\boldsymbol{x}}_{\boldsymbol{1}}$- 8${\boldsymbol{x}}_{\boldsymbol{2}}$- $\boldsymbol{10}{\boldsymbol{x}}_{\boldsymbol{3}}$

Conditions to find stationary points are

$\frac{\partial f}{\partial x_1}$ = 0 $\mathrm{\to}$ $\boldsymbol{2}{\boldsymbol{x}}_{\boldsymbol{1}}\boldsymbol{-}\boldsymbol{6}\boldsymbol{=}\boldsymbol{0}$$\mathrm{\therefore }$ ${\boldsymbol{x}}_{\boldsymbol{1}}\boldsymbol{=}\boldsymbol{3}$

$\frac{\partial f}{\partial x_2}$ = 0 $\mathrm{\to}$ $\boldsymbol{2}{\boldsymbol{x}}_{\boldsymbol{2}}\boldsymbol{-}\boldsymbol{8}\boldsymbol{=}\boldsymbol{0}$$\mathrm{\therefore }$ ${\boldsymbol{x}}_{\boldsymbol{2}}\boldsymbol{=}\boldsymbol{4}$

$\frac{\partial f}{\partial x_3}$ = 0 $\mathrm{\to}$ $\boldsymbol{2}{\boldsymbol{x}}_{\boldsymbol{3}}\boldsymbol{-}\boldsymbol{10}\boldsymbol{=}\boldsymbol{0}$$\mathrm{\therefore }$ ${\boldsymbol{x}}_{\boldsymbol{3}}\boldsymbol{=}\boldsymbol{5}$

Stationary Point ${\boldsymbol{X}}_{\boldsymbol{0}}$ = (3,4,5)

Now, $\boldsymbol{\ \ \ }\frac{{\partial }^2f}{\partial {\boldsymbol{x}}^{\boldsymbol{2}}_{\boldsymbol{1}}\boldsymbol{\mathrm{\ }}}=2$; $\frac{{\partial }^2f}{\partial x_{1\ }\partial x_2\boldsymbol{\mathrm{\ }}}=0;$ $\frac{{\partial }^2f}{\partial x_{2\ }\partial x_3\boldsymbol{\mathrm{\ }}}=0;$ $\frac{{\partial }^2f}{\partial {\boldsymbol{x}}^{\boldsymbol{2}}_{\boldsymbol{2}}\boldsymbol{\mathrm{\ }}}=2$ $\frac{{\partial }^2f}{\partial x_{1\ }\partial x_3\boldsymbol{\mathrm{\ }}}=0;$ ; $\frac{{\partial }^2f}{\partial {\boldsymbol{x}}^{\boldsymbol{2}}_{\boldsymbol{3}}\boldsymbol{\mathrm{\ }}}=2$

Heissian Matrix = $\left| \begin{array}{ccc} \frac{{\partial }^2f}{\partial {\boldsymbol{x}}^{\boldsymbol{2}}_{\boldsymbol{1}}\boldsymbol{\mathrm{\ }}} & \frac{{\partial }^2f}{\partial x_{1\ }\partial x_2\boldsymbol{\mathrm{\ }}} & \frac{{\partial }^2f}{\partial x_{1\ }\partial x_3\boldsymbol{\mathrm{\ }}} \\ \frac{{\partial }^2f}{\partial x_{1\ }\partial x_2\boldsymbol{\mathrm{\ }}} & \frac{{\partial }^2f}{\partial {\boldsymbol{x}}^{\boldsymbol{2}}_{\boldsymbol{2}}\boldsymbol{\mathrm{\ }}} & \frac{{\partial }^2f}{\partial x_{2\ }\partial x_3\boldsymbol{\mathrm{\ }}} \\ \frac{{\partial }^2f}{\partial x_{1\ }\partial x_3\boldsymbol{\mathrm{\ }}} & \frac{{\partial }^2f}{\partial x_{2\ }\partial x_3\boldsymbol{\mathrm{\ }}} & \frac{{\partial }^2f}{\partial {\boldsymbol{x}}^{\boldsymbol{2}}_{\boldsymbol{3}}\boldsymbol{\mathrm{\ }}} \end{array} \right|$

$ = \left| \begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right|$

The value of determinants of principal minor are $\left|2\right|$ = 2; $\left| \begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right|$ = 4; $\left| \begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right|=8$

Since all the determinants are positive z is minimum at ${\boldsymbol{X}}_{\boldsymbol{0}}$ = (3,4,5) $\mathrm{\therefore } {\boldsymbol{z}}_{\boldsymbol{min}}\boldsymbol{=\ }\ 3^2+\ 4^2+\ 5^2-6\left(3\right)-8\left(4\right)-10(5)$ $ = 9+\ 16+\ 25-18-32-50$ $= -50$

Please log in to add an answer.