0
14kviews
Using Lagrange's method of multipliers solve the NLPP, optimize $z = 4x_{1} + 8x_{2} - x_{1}^2 - x_{2}^2$ subjected to $x_{1} + x_{2} = 4, x_{1}, x_{2} \geq 0$.
1 Answer
3
2.0kviews

Let $$f(x_1,x_2) = 4x_1+8x_2-x^2_1- x^2_2\ ; h = x_1+x_2-4$$ and $\lambda$ be Lagrangian multiplier

Lagrangian function L = f - $\lambda$h

L = $(x_1+8x_2$ $-$ $x^2_1$ $-$ $x^2_2)$ $--$ $\lambda$($x_1+x_2-4)$

L = $x_1+8x_2$ $-$ $x^2_1$ $-$ $x^2_2$ $-$ $\lambda$$x_1-\mathrm{\lambda}x_2+4\mathrm{\lambda}$ Conditions to find stationary points are $\frac{\partial L}{\partial x_1}$ = 0 …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.