| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > Mechanical Engineering > Sem 4 > Applied Mathematics IV
Marks: 8M
Year: Dec 2015
| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > Mechanical Engineering > Sem 4 > Applied Mathematics IV
Marks: 8M
Year: Dec 2015
| written 9.4 years ago by | • modified 9.4 years ago |
Let$$ f(x_1,x_2) = 2x_1+3x_2-x^2_1-2x^2_2;h_1= x_1+3x_2-6;\ h_2= 5x_1+{2x}_2-10$$
Let $\lambda$ be Lagrangian multiplier
Lagrangian function $$L = f - h_1{\mathrm{\lambda}}_1-h_2{\mathrm{\lambda}}_2$$
L = $(\mathrm{\ }2x_1+3x_2-x^2_1$ $-$ $2x^2_2)$ $-$ ${\mathrm{\lambda }}_1$ ( $x_1+3x_2-6)\ -$ ${\mathrm{\lambda}}_2$( $\mathrm{\ }5x_1+{2x}_2-10\mathrm{\ })$
L = $\mathrm{\ \ \ }\ 2x_1+3x_2-x^2_1\mathrm{\ }-\mathrm{\ }2x^2_2\mathrm{\ }--\mathrm{\ }{\mathrm{\lambda}}_1\mathrm{\ }x_1-{\mathrm{\lambda}}_13x_2+{\mathrm{\lambda}}_16\ --\mathrm{\ }{\mathrm{\lambda }}_25x_1-\mathrm{\ }{\mathrm{\lambda}}_2{2x}_2+\mathrm{\ }{\mathrm{\lambda}}_210\mathrm{\ }$
Kuhn-Tucker conditions are:
1) $\frac{\partial L}{\partial x_1}$ = 0 $\mathrm{\to}$ $2-2x_1-{\mathrm{\lambda}}_1-5{\mathrm{\lambda}}_2=0$
2) $\frac{\partial L}{\partial x_2}$ = 0 $\mathrm{\to}$ $\mathrm{3}-4x_2-{\mathrm{3}\mathrm{\lambda}}_1-2{\mathrm{\lambda}}_2=0$
3) ${\mathrm{\lambda}}_1h$ ($x_1,x_2)$ $=0$ $\mathrm{\to}$ ${\mathrm{\lambda}}_1$ ($x_1+3x_2-6)\ $ $=0$
4) ${\mathrm{\lambda}}_2h$ ($x_1,x_2)$ $=0\mathrm{\ \ \ }\mathrm{\to }\mathrm{\ \ \ }{\mathrm{\lambda}}_2\mathrm{\ (}{5x}_1+{2x}_2-10\mathrm{\ })\ \mathrm{\ \ \ \ }=0\mathrm{\ \ \ \ }$
5) $h_1$($x_1,x_2)\mathrm{\le }\mathrm{\ }$ $0$ $\mathrm{\to }\mathrm{\ \ \ \ \ \ }x_1+3x_2-6$ $\mathrm{\le }0$ 6) $h_2$($x_1,x_2)\mathrm{\le }\mathrm{\ }$ $0$ $\mathrm{\to }\mathrm{\ \ \ \ \ }x_1+{2x}_2-10\mathrm{\ }$ $\mathrm{\le }0$ 7) ${\mathrm{\lambda}}_1,{\mathrm{\lambda}}_2,x_1,x_2$ $\mathrm{\ge}$ 0
From Kuhn-Tucker conditions (3) (4) following 4 cases arises
Case 1. $${\mathrm{\lambda}}_1={\mathrm{\lambda}}_2=0$$
From (1), $2-2x_1-0-0$ = 0 $$\mathrm{\ }\mathrm{\therefore }\mathrm{\ }x_1=1$$ From (2), $\mathrm{3}-4x_2-0-0$= 0 $$\mathrm{\therefore }\mathrm{\ }x_2=\frac{3}{4}$$ Substitute $x_1\ and\ x_2\ in\ (5)$
LHS =$\ 1+3\ \left(\frac{3}{4}\right)-6=-\frac{11}{4}\lt0$
Substitute $x_1\ and\ x_2\ in\ (6)$
LHS =$\ 1+2\left(\frac{3}{4}\right)-10=-\frac{15}{2}\lt0$
Values${\mathrm{\lambda}}_1,{\mathrm{\lambda}}_2,x_1,{\&\ x}_2$ satisfies Kuhn-Tucker conditions
Stationary Point $X_0$ = $(1,\frac{3}{4})$
Z is maximum $$\mathrm{\therefore } z_{max}=\ \ \ {2\left(1\right)+3\left(\frac{3}{4}\right)-\ 1^2-2\left(\frac{3}{4}\right)}^2$$ $$ = \frac{17}{8}$$
Case 2. $${\mathrm{\lambda}}_1\neq 0,\ \ {\mathrm{\lambda}}_2=0$$
From (3), $x_1+3x_2-6$= 0
$$\mathrm{\ }\mathrm{\therefore }\mathrm{\ }x_1+3x_2=6 \mathrm{\to }.......(8)$$
From (1), $2-2x_1-{\mathrm{\lambda}}_1-0$= 0
$$\mathrm{\therefore }\mathrm{\ }2x_1+{\mathrm{\lambda}}_1= 2 \mathrm{\to }\mathrm{\ }.....(9)$$
From (2), $\mathrm{3}-4x_2-{\mathrm{3}\mathrm{\lambda}}_1-0$= 0
$$\mathrm{\therefore }\mathrm{\ }4x_2+3{\mathrm{\lambda}}_1= 3 \mathrm{\to }\mathrm{\ }......(10)$$
Solving (8) (9) and (10) simultaneously, we get $$x_1=\frac{3}{2}; x_2=\frac{3}{2}; {\mathrm{\lambda}}_1=-1$$
Values ${\mathrm{\lambda}}_1$ does not satisfies Kuhn-Tucker conditions (7)
$\mathrm{\therefore }\mathrm{We\ Reject\ this\ case}$
Case 3. $${\mathrm{\lambda}}_1=0,\ \ {\mathrm{\lambda}}_2\neq 0$$
From (4), 5$x_1+{2x}_2-10\mathrm{\ }\ \mathrm{\ \ \ \ }=0\mathrm{\ \ \ \ }$
$$\mathrm{\ }\mathrm{\therefore }{5x}_1+{2x}_2=10\ \mathrm{\ \ \ \ } \mathrm{\to }.........(11)$$
From (1), $2-2x_1-0-5{\mathrm{\lambda}}_2$= 0
$$\mathrm{\therefore }\mathrm{\ }2x_1+5{\mathrm{\lambda}}_2= 2 \mathrm{\to }\mathrm{\ }..........(12)$$
From (2), $\mathrm{3}-4x_2-0-2{\mathrm{\lambda}}_2$= 0
$$\mathrm{\therefore }4x_2+2{\mathrm{\lambda}}_2= 3 \mathrm{\to }\mathrm{\ }......(13)$$
Solving (11) (12) and (13) simultaneously, we get $$x_1=\frac{89}{54}; x_2=\frac{95}{108}; {\mathrm{\lambda}}_2=-\frac{7}{27}$$
Values ${\mathrm{\lambda}}_2$ does not satisfies Kuhn-Tucker conditions (7)
$\mathrm{\therefore }\mathrm{We\ Reject\ this\ case}$
Case 4. ${\mathrm{\lambda}}_1\neq 0,\ \ {\mathrm{\lambda}}_2\neq 0$
From (3), $x_1+3x_2-6\ $= 0
$$\mathrm{\ }\mathrm{\therefore }\mathrm{\ }x_1+3x_2=6 \mathrm{\to }...........(14)$$
From (4), 5$x_1+{2x}_2-10\mathrm{\ \ \ \ \ }=0\mathrm{\ \ \ \ }$
$$\mathrm{\ }\mathrm{\therefore }\mathrm{5}x_1+{2x}_2=10\mathrm{\ \ }\ \mathrm{\ \ \ \ } \mathrm{\to }........(15)$$
Solving (14) and (15) simultaneously, we get $$x_1=\frac{18}{13}; x_2=\frac{20}{13}; $$
From (1), $2-2x_1-{\mathrm{\lambda}}_1-5{\mathrm{\lambda}}_2=0$
$$\mathrm{\therefore }\mathrm{\ }2-2(\frac{18}{13})-{\mathrm{\lambda}}_1-5{\mathrm{\lambda}}_2= 0$$
$${\mathrm{\lambda}}_1+5{\mathrm{\lambda}}_2=-\frac{10}{13} \mathrm{\to }\mathrm{\ }..........(16)$$
From (2), $\mathrm{3}-4x_2-{\mathrm{3}\mathrm{\lambda}}_1-2{\mathrm{\lambda}}_2$= 0 $$\mathrm{\therefore }\mathrm{3}-4(\frac{20}{13})-{\mathrm{3}\mathrm{\lambda}}_1-2{\mathrm{\lambda}}_2= 0 $$
$${\mathrm{3}\mathrm{\lambda}}_1+2{\mathrm{\lambda }}_2\mathrm{=-}\frac{\mathrm{41}}{\mathrm{13}}\mathrm{\ }\mathrm{\to }\mathrm{\ }.........(17)$$
Solving (16) & (17) we get ${\mathrm{\lambda}}_1$ $\mathrm{=-}\frac{\mathrm{185}}{\mathrm{169}}\mathrm{\ }$ ${\mathrm{\lambda}}_2\mathrm{=}\frac{\mathrm{11}}{\mathrm{169}}$
Value of ${\mathrm{\lambda}}_1$ do not satisfy Kuhn-Tucker conditions
$\mathrm{\therefore }\mathrm{We\ Reject\ this\ case}$
Hence from Case 1,2,3 & 4 We conclude that
$\mathrm{\therefore }$ $z_{max}$ = $\frac{17}{8}$ at Stationary Point $X_0$ = $(1,\frac{3}{4})$