| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > Mechanical Engineering > Sem 4 > Applied Mathematics IV
Marks: 5M
Year: May 2015
| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > Mechanical Engineering > Sem 4 > Applied Mathematics IV
Marks: 5M
Year: May 2015
| written 9.4 years ago by | modified 3.6 years ago by |
For probability density function.
(P.D.F.) $$\int^{\infty }_{-\infty }{f\left(x\right)dx=1}\ \\ \therefore k\ \int^1_0{kx\left(1-x\right)dx=1}\therefore k\int^1_0{\left(x-x^2\right)dx=1}\\ \therefore k{\left[\frac{x^2}{2}-\frac{x^3}{3}\right]}^1_0=1\\\ \therefore k\left\{\left(\frac{1}{2}-\frac{1}{3}\right)-\left(0-0\right)\right\}=1\\ \therefore \frac{k}{6}=1\therefore k=6\\ \therefore f\left(x\right)=6x(1-x)$$
Part II
Given P(x $\mathrm{\le}$ b)=P(x $\mathrm{\ge}$ b)
But P(x $\mathrm{\le}$ b)+P(x $\mathrm{\ge}$ b)=1
$\mathrm{\therefore }$ P(x $\mathrm{\le}$ b)=P(x $\mathrm{\ge}$ b)=$\ \frac{1}{2}$
Consider P(x $\mathrm{\le}$ b)=$\ \frac{1}{2}$ $$\therefore \int^b_0{6x\left(1-x\right)dx=\frac{1}{2}}\\ \therefore \ 6\int^b_0{\left(x-x^2\right)dx=\frac{1}{2}}\\ \therefore 6{\left[\frac{x^2}{2}-\frac{x^3}{3}\right]}^b_0=\frac{1}{2}\\ \therefore \ \left\{\left[\frac{b^2}{2}-\frac{b^3}{3}\right]-\left[0-0\right]\right\}=1\\ \therefore {6b}^2-{4b}^3=1$$
Solving on cal c we get
B=1.366,-0.366,0.5
But 0$\lt$b$<$1 $\mathrm{\therefore }$ b=0.5