0
Figure shows the layout of building columns and load on column at foundation level. Design suitable raft foundation. All the columns are of size $400 mm \times 400 mm.$

consider SBS of soil = $110KN/m^2$. Adopt concrete $M_{20}$ & steel $F_{e 415}$. Design only slab and main beam ‘A’ & draw the reinforcement details.

enter image description here

Mumbai University > Civil Engineering > Sem 8 > Design and Drawing of Reinforced Concrete Structure

Marks : 20

Year : DEC 2015

mumbai university ddrcs • 1.0k  views
0  upvotes
0

Area of footing ruqd $=\dfrac {\text {Total cal}^m load+10\%\text {self wt.}}{SBS} \\ =\dfrac {(2×1100+2×1500)×1.1)}{110} \\ =52m^2 $

Assume 0.5 projections from the column.

enter image description here

Area of footing $=9.4×7.4=69.56 \gt 52m^2$

Factored upward soil pressure (w):-

$w=\dfrac {1.5×\text {column load}}{\text {Area of footing}} \\ = \dfrac {1.5×(2×1100+2×1500)}{7.4×9.4} \\ =112.13 \gt SBS $

Revise raft section size

Provide $8m×10m$

$$w={1.5(2×1100+2×1500)}{8×10}$$

$=97.5 \lt SBS$

∴ safe

*) Slab

enter image description here

Introduce secondary beam as shown in figure to break the panel load and make it one way slab.

$W=97.5KN$

Cantilever slab:-$M=\dfrac {wl^2}2= \dfrac {97.5 \times0.7^2}2=23.88KNm. $

Mid-span of continuous slab:-

$M(+ve) = \dfrac {wl^2}{10}= \dfrac {97.5 \times 3^2}{10}=87.75KNm$

Support of secondary beams:-

$M(-ve)=\dfrac {wl^2}{12}=\dfrac {97.5 \times 3^2}{12}=73.12KNm \\ Mu_{max} =87.75 KNm \\ ∴Mu_{max} =0.138 fck \space \space l\space \space d^2 \\ 87.75 \times 106=0.138\times20\times1000\times dr^2 \\ dr=178mm $

Provide $D=250mm \\ D=250-50-20/2 \\ =190mm\\ Astmin = \dfrac {0.12bD}{100}= \dfrac {0.12}{100}×1000×250=300mm^2 $

enter image description here

Dist. Steel:-

Astmin= $300mm^2$ ,Provide $8 mm ∅ $

Spacing= $\dfrac {1000×50}{300}=166.67 \\ ≈150 mm ∅$

Provide $8 mm ∅ 150 mm c/c$

enter image description here

R|F details of slabs:-

Design of beam $B_1$

Total upward load $=(5.6×3.5)×97.5 \\ =1911 KN \\ udl=\dfrac {1911}{5.6}=341.25 KN|m$

enter image description here

$M_u=\dfrac {341.25×5.6^2}8=1337.7 KNm $

By T-beam method:-

enter image description here

From IS code 456:2000 page.36

$l_f (\text {codal}) =\dfrac {l_0}6 + 6D_f+l_w\\ =\dfrac { 5600} 6 + 6 × 200+400 \\ =2534 mm \\ \text {Assume } x_4=D_f=200 mm \\ M_{uf}=0.36 fck \space \space l_f x_u (d-0.42x_u ) \\ =0.36×20×2534×200(940-0.42×200) \\ =3124 KNm\gt M_u$

N.A. lies in flange

$Astr=\dfrac {0.5×20×2534×940}{415} ×(1-\sqrt{\dfrac {1-4.6×1338×10^6}{20×2534×940^2 }} )\\ = 4091 mm^2 $

Provide $9-25 mm ∅$

$$Astmin =\dfrac {0.85 lwd}{fy}=\dfrac {0.85×400×940}{415} = 771mm^2 \lt Astr$$

$Astp=4418 mm^2 \\ pt.=\dfrac {100×4418}{400×940} =1.175\% \\ Z_{uc} = 0.655N|mm^2 \\ V_{uc} = Z_{uc} ld= 0.655×400×940=246.28 \\ V_{u \space min}=0.4×400×940=150 \space\space\&\space\space 396.68 KN \ltV_{uD}$

Hence design & provide shear R|F

$V_{us}=V_{UD}-V_{UC} \\ = 955.5-396.68 \\ =558.82 KN$

Provide 8 mm ∅ & logged stirrups

$a_{sv} = 4×π⁄4×8^2=200 mm^2 $

Spacing :-

$S_1=\dfrac {0.87 fy\space \space asvd}{V_{us}} =\dfrac {0.87×415×200×940}{558.82×10^3}=12146 mm \\S_2=0.75×940=705mm \\ S3=300mm$

Provide $8 mm ∅ 4 LG @ 120$ mm c/c.

Primary beam $B_2:-$

enter image description here

enter image description here

Hence design and provide shear R|F

$V_{us} =1331-274=1057 KN $

Assume 12 mm ∅ 4 LG stirrups

$As_v = 4×113=452 mm^2 $

Spacing $= s_1=\dfrac {0.87 f_y as_{vd}}{V_{us}} =\dfrac {0.87×415×452×940}{1057×10^3}=145.13 mm \\ S_2=0.75×940=705mm \\S3=300mm $

Provide $12 mm ∅ 4$ LG stirrups @ 125 mm c/c.

enter image description here

0  upvotes
Please log in to add an answer.

Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.

Search

Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More