Design a suitable doglegged staircase for a public building to re located in a stair room of size $6m \times 3m$. Take floor to floor height 3.6m. Live load $=4kN/m^2$.

Finish load $=1.25kN/m^2.$ Use LSM with concrete and steel grade M20 and Fe415. Also draw:

a) Plan showing flight dimensions, mid landing and position of support.

b) Loading diagram, SFD and BMD of typical flight.

c) Reinforcement details in flight through sectional elevation.

Mumbai University > Civil Engineering > Sem 8 > Design and Drawing of Reinforced Concrete Structure

Marks : 20

Year : DEC 2015

mumbai university ddrcs • 2.7k  views


Riser=120 mm to 150 mm

Tread=250 mm to 300 mm

$\therefore $ Maximum no. of riser(R) in one flight=12

No. of tread in one flight $=R-1$

enter image description here

D.L. of waist slab

$=D\times 25\times \sec\phi\\ \therefore \sec\phi =\dfrac {\sqrt{T^2+R^2}}T\\ \therefore T=Tread \\ R=Riser$

It is a doglegged staircase.

Floar to floar height=3.6m

Height/flight $=3.6/2= 1.8m$

Assume Riser $=150mm \\ Tread=250 mm.$

No. of riser in one flight $=1800/150=12$ Nos.

No. of tread in one flight $=R-1=12-1=11 $

enter image description here

Trial depth $=\dfrac {\text {eff-span }}{S/D ratio \times M.F.}$

$S/D ratio=20-\gt $(for simply supported) M.F. (Modification Factor) $=1.4 ( \because Fe 415) \\ d_{reqd} =\dfrac {6300}{20\times 1.4} =225mm $

Assume D=300 mm.

$\therefore$ d=D-clear cover $-(ΙΈ/2)\\ = 300-25-(20/2) \\ D=265 mm.$

Load Calculation on step portion:

a) D.L. of waist slab

$=D\times 25\times \dfrac {\sqrt{R^2+T^2}}T \\ =0.3\times25\times\dfrac {\sqrt{150^2+250^2}}{250} \\ =8.74 kN/m^2$

b) D.L. of step $=R/2\times 25 \\ =(0.15)/2 \times 25=1.875 kN/m^2 $

c) $F.F. =1.25 kN/m^2.$

d) $L.L.=4kN/m^2$

Total $= 8.74 +1.875+1.25+4 \\ = 15.86 kN/m^2$

Factored Load $=1.5\times 15.86 \\ =23.8 kN/m^2$

Load calculation on landing portion:

a) D.L. of slab $=D \times 25=0.3 \times 25=7.5 kN/m^2$

b) F.F. = $1.25kN/m^2$

c) L.L.= $4 Kn/m^2$

$\therefore $ Total $=7.5+1+4=12.5kN/m^2$

$\therefore $ Factored Load $=12.5 \times 1.5 \\=18.75 kN/m^2$

First Flight

enter image description here


$\sum M_c=0\\ V_A\times4.4-62.47\times(1.312+1.775)-33.28\times0.88=0 \\ V_A=50.48 kN \\ \sum f_y=0 \\ V_A+V_B=62.47+33.28 \\ V_B=45.27kN \\ B.M_{max} =50.48\times 2.12 - \dfrac {2.8\times2.12^2}2 =53.53 kNm \\ B.M_B =45.27\times1.775 -\dfrac {18.75\times1.775^2}2=50.81kNm$

Typical Flight:

enter image description here


$\sum M_0 =0 \\ V_A\times 6.3-33.28\times (0.88+2.75+1.755)-65.45\times(1.375+1.775)-33.28\times0.88=0 \\ \therefore V_A=65.92 kN \\ \sum F_y=0 \\ V_A+V_D=33.28 +65.45 +33.28 \\ V_D=66.09 kN\\ B.M._{max} =65.92\times(1.775+1.375)-33.28\times(0.88+1.375)-\dfrac {23.8\times1.375^2}2\\ B.M._{max}=110.1kNm \\ B.M_{boro}=65.92\times1.775- \dfrac {18.75\times1.755^2}2=87.47 kNm $

Data:- b=100 mm , d=265 mm, fck=$20N/mm2 \\ F_y=415 N/mm^2$

enter image description here

Distribution steel: Assume 8 mm and Admin $=360 mm^2 = (\dfrac \pi4 \times8^2)$

Spacing $= \dfrac {1000Asv}{Ast_{min}}=\dfrac {1000\times50}{360}\\ =138.88 mm \\ \approx 130 mm$


1)Check for deflection:

For typical flight

$Fs=0.58 fy \dfrac {Astr}{Astp}\times 0.58\times415\times \dfrac {1279.49}{1340} \\ =229.83 N/mm^2 \\ Pt. =0.5 \\M.F.=1.45 \\ \therefore d=\dfrac {6300}{20\times1.45}=217.24 \lt 265 mm \\ \therefore safe$

2)Check for development length

$M_0=M/2=\dfrac {110.1}2=55.05kNm \\ V=66.09kN\\ L_0=\dfrac {bs}2-25+3\times\phi =\dfrac {300}2-25+3\times16=173mm \\ L_d=\dfrac {0.87fy\phi}{4.zbd}=47\phi=47\times16=752 mm \\ L_d \leq \dfrac {1.3M_0}V+L_0 \\ 752 \leq \dfrac {1.3\times55.05\times10^6}{66.09\times10^3}+173=1255.84 \\ \therefore safe$

Reinforcement details:

First flight:

enter image description here

Typical Flight:

enter image description here

Please log in to add an answer.

Continue reading

Find answer to specific questions by searching them here. It's the best way to discover useful content.

Find more