0
3.3kviews
Convolve $x[n] = (\dfrac {1^n}3 )u[n]$ with $h[n] = (\dfrac {1^n}2 )u[n]$ using convolution sum formula and verify your answer using z-transform.

Mumbai University > EXTC > Sem 4 > Signals and Systems

Marks : 10

Year : DEC 2014

1 Answer
0
122views

By using convolution sum formula i.e.,

enter image description here

$x[n]= (\dfrac {1^n}3)u(n) ∴x[k]= (\dfrac 13)^k u(k). \\ \text {Similarly } \space h[n]= (\dfrac 12)^n u(n) ∴h[n-k]=(\dfrac 12)^{n-k} u(n-k). \\ ∴y[n]= ∑\limits_{-∞}^∞ x[k] × h[n-k]. \\ y[n] = ∑\limits_{k=-∞}^∞.(\dfrac 13)^k \space u(k) (\dfrac 12)^{n-k} u(n-k).$

Since k>0, the lower limit of summation in above …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.