0
What is a Unitary Matrix?

Mumbai University > Computer Engineering > Sem 7 > Image Processing

Marks: 5 Marks

Year: Dec 2015

0  upvotes
0

Consider DFT matrix for $N=4,A=\dfrac{1}{√4}\begin{bmatrix}1&1&1&1 \\ 1&-j&-1&j \\ 1&-1&1&-1 \\ 1&j&-1&-j\end{bmatrix}$

If AA*=I

Then A is a unitary matrix

For N=4,

AA*$= \dfrac{1}{√4} \begin{bmatrix}1&1&1&1 \\ 1&-j&-1&j \\ 1&-1&1&-1 \\ 1&j&-1&-j \end{bmatrix} \dfrac{1}{√4} \begin{bmatrix}1&1&1&1 \\ 1&j&-1&-j \\ 1&-1&1&-1 \\ 1&-j&-1&j \end{bmatrix} \\ = \dfrac14 \begin{bmatrix}4&0&0&0 \\ 0&4&0&0 \\ 0&0&4&0 \\ 0&0&0&4 \end{bmatrix} \\ = \begin{bmatrix}1&0&0&0 \\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&1 \end{bmatrix}$

AA*= I

0  upvotes
Please log in to add an answer.

Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.

Search

Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More