0
5.0kviews
Find the value of $x(n) = cos(0.25 \pi n)$ for n=0, 1, 2, 3. Compute the DFT of x(n) using FFT flow graph.
1 Answer
| written 9.0 years ago by |
| n | $\pi$ | $\cos \pi$ |
|---|---|---|
| 0 | 0 | 1 |
| 1 | $\dfrac{\pi}{4}$ | $\dfrac{1}{\sqrt2}$ |
| 2 | $\dfrac {\pi}{2}$ | 0 |
| +3 | $\dfrac{3\pi}{4}$ | $\dfrac{1}{\sqrt2}$ |

Result: X(k)={1, 1-√2 j, 1, 1+√2 j}