Question: Draw the output waveform for sine wave of 1 V peak at 100 Hz applied to the differentiator.
0

Design an op-amp differentiator that will differentiate an input signal with $f_{\max}=100 Hz$. Draw the output waveform for sine wave of 1 V peak at 100 Hz applied to the differentiator. Also repeat it for square wave input.

Mumbai University > Computer Engineering > Sem 3 > Electronic Circuits and Communication Fundamentals

Marks: 10 Marks

Year: May 2015

ADD COMMENTlink
modified 2.8 years ago  • written 2.8 years ago by gravatar for Sayali Bagwe Sayali Bagwe2.2k
0

Select $f_a=f_{\max}=100 Hz=\dfrac{1}{2πR_f C_1 }$

Let $C_1=0.1 μF$

Then $R_f=\dfrac{1}{2π(10^2)(10^{-7})}=15.9 kΩ$

Now choose $f_b=10f_a \\ =1 kHz \\ =\dfrac{1}{2πR_1 C_1}$

Therefore, $R_1=\dfrac{1}{2π(10^3)(10^{-7})}=1.59 kΩ$

Since $R_f C_f=R_1 C_1$

We get,

$$C_f=\dfrac{1.59 \times 10^3 \times 10^{-7}}{15.9 \times10^3 }=0.01 μF$$

Since, $v_i=1\sin 2π(100)t$

$v_o= -R_f C_1 \dfrac{dv_i}{dt} \\ = -(15.9 kΩ)(0.1 μF)\dfrac{d}{dt}[(1V)\sin(2π)(10^2)t] \\ = -(15.9 kΩ)(0.1 μF)(2 π) (10^2)\cos[(2π)(10^2)t] \\ = -0.999 \cos[(2π)(10^2)t] \\ = -1 \cos[(2π)(10^2)t]$

The input and output waveforms are shown in Fig.(a)

For a square wave input, say 1V peak and 1 KHz, the output waveform will consist of positive and negative spikes of magnitude $V_{sat}$, which is approximately 13V for ± 15V op-amp power supply. During the time periods for which input is constant at ± 1V, the differentiated output will be zero. However, when input transits between t 1V levels, the slope of the input is infinite for an ideal square wave. The output, therefore, gets clipped to about ±13V for a ± 15V op-amp power supply as shown in Fig (b).

enter image description here

ADD COMMENTlink
written 2.8 years ago by gravatar for Sayali Bagwe Sayali Bagwe2.2k
Please log in to add an answer.