0
5.1kviews
Find the rank of the matrix by reducing it to normal form $\begin{vmatrix} 1&1&1\\ 1&-1&-1\\ 3&1&1\\ \end{vmatrix} $
2 Answers
written 8.2 years ago by |
Let $A=\begin{vmatrix} 1&1&1\\ 1&-1&-1\\ 3&1&1\\ \end{vmatrix} $
By $R_2-R_1$
$\begin{vmatrix} 1&1&1\\ 0&-2&-2\\ 3&1&1\\ \end{vmatrix} $
By $R_3-3R_1$
$\begin{vmatrix} 1&1&1\\ 0&-2&-2\\ 3&-2&-2\\ \end{vmatrix} $
By $R_3+R_2$
$\begin{vmatrix} 1&1&1\\ 0&-2&-2\\ 0&0&0\\ \end{vmatrix} $
There are total two non-zero rows
∴ Rank of matrix is 2.