0
1.5kviews
Let H= $\begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \\ 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix}$ be parity check matrix.

Determine the group code $e_H: B^3- \gt B^6$

Mumbai University > Computer Engineering > Sem 3 > Discrete Structures

Marks: 4 Marks

Year: Dec 2014

1 Answer
0
26views

We have

$$N=\begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}$$

And

$B^3= \{000, 001, 010, 011, 100, 101, 110, 111\}.$

Then,

$000*\begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=000, \ \ \ \ \ \ \ 001* \begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=111 \\ 010 * \begin{bmatrix} 1&0&0 \\ 0&1&1 \\ …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.