0
3.2kviews
Decode the following words relative to a maximum likelyhood decoding function. i)11001 ii) 01010 iii) 00111

Consider the (3,5) group encoding function defined by

$e(000)=00000 \ \ \ \ \ \ \ \ \ \ \ \ e(001)=00110 \\ e(010)=01001 \ \ \ \ \ \ \ \ \ \ \ \ e(011)=01111 \\ e(100)=10011 \ \ \ \ \ \ \ \ \ \ \ \ e(101)=10101 \\ e(110)=11010 \ \ \ \ \ \ \ \ \ \ \ \ e(111)=11000$

Mumbai University > Computer Engineering > Sem 3 > Discrete Structures

Marks: 8 Marks

Year: May 2015

1 Answer
0
100views
  • To decode the word 11001 we first arrange the given code as

    $00000 \ \ \ \ \ 00110 \ \ \ \ \ 01001 \ \ \ \ \ 01111 \ \ \ \ \ 10011 \ \ \ \ \ 10101 \ \ \ \ \ 11010 \ …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.