| written 8.9 years ago by | modified 3.9 years ago by |
Mumbai University > Information Technology, Computer Engineering > Sem 3 > Applied Mathematics 3
Marks: 6M
Year: May 2014
| written 8.9 years ago by | modified 3.9 years ago by |
Mumbai University > Information Technology, Computer Engineering > Sem 3 > Applied Mathematics 3
Marks: 6M
Year: May 2014
| written 8.9 years ago by |
Given, $v = x^2 - y^2 + \frac{x}{x^2+y^2}$
Differentiating with respect to r we get
$v_x = 2x - 0 + (x^2+y^2) frac{∂}{∂x} r - x \frac{∂}{∂x} (x^2+y^2 )/(x^2+y^2)^2$
$v_x = 2x + \frac{x^2+y^2 - x(2x)}{(x^2+y^2)^2}$
$v_x = 2x + \frac{(y^2 - x^2)}{(x^2+y^2)^2}$
Differentiating v with respect to y
$v_y = 0 - 2y + x \frac{-1 (2y)}{(x^2+y^2)^2}$
$v_y = - 2y - \frac{2xy}{(x^2+y^2)^2}$
Let f(z) = u + i v be analytic
Therefore, $f^1 (z) = v_y + iv_x$
$= -2y - \frac{2xy}{(x^2 + y^2)^2} + i [ 2x + \frac{y^2 - x^2}{(x^2 + y^2)^2}$
By Milne Thompsons method, put x=z & y=0
Therefore, $f^1(z) = 0 - 0 + i[2z + \frac{(-z)^2}{(z^2)^2}]$
$= i[2z - \frac{1}{z^2}]$
$f(z) = \int f^1 (z)dz$
$= \int i(zz - z^2 )dz$
$= i \bigg[\frac{2z^2}{2} - \frac{z^3}{3} \bigg]dz$
$= i(z^2 + \frac{1}{z})+k$
$u + i v = i\bigg[(x + iy)^2 + \frac{1}{(x+iy)}\bigg] + k$
$= i\bigg[x^2 + 2xiy - y^2 + \frac{x-iy}{x^2 + y^2}\bigg] + k$
$= i \bigg[x^2 - y^2 + \frac{x}{x^2 + y^2}\bigg] - 1[2xy - \frac{y}{x^2 + y^2}]$
Therefore, equating real and imaginary parts
$ u = -2xy + \frac{y}{x^2+y^2} \hspace{0.2cm} and \hspace{0.2cm} v = x^2 - y^2 + \frac{x}{x^2 + y^2}$