PART I
Let the bilinear transformation be $w= \frac{az+b}{cz+d}$ ---- (1)
Let z= -1 & w= ∞ in (1)
$:. \frac{1}{w} = \frac{cz+d}{az+b}$
$0 = \frac{-c+d}{-a+b}$
:. c = d -----(2)
Let z=1 and w=0
$:. 0 = \frac{a+b}{c+d}$
:. a= -b -----(3)
$1 = \frac{ai+b}{ci+d}$
:. ci+d = ai + b
di+ d =-bi+b
d(1+i) = b(1-i)
$:. d= \frac{(1-i)}{(1+i)} b= -ib$ -----(4)
:. d= c
c= -ib ------(5)
Now replacing a,c &d in terms of –b in eq (1) we get
$w = \frac{-bz+b}{-ibz-ib}$
$w = \frac{-b(z-1)}{-ib(z+1)}$
$:. w={(z-1)}{i(z+1)}$
This is the required transformation
Part II
|w| = 1 : is the unit circle in w plane
$= \frac{z-1}{i(z+1)} = 1$
:. (z-1) = |i| (z+1)
:. |x+iy-1|= |i| (x+iy+1)
:. |(x-1)+iy| = |(x+1)i-y|
Taking magnitude we get
$\sqrt{(x - 1)^2 + y^2} = \sqrt{(x+1)^2 + (-y)^2}$
:. Squaring both the sides we get
$=(x - 1)^2 +y^2 = (x + 1)^2 + y^2$
$X^2 – 2x + 1 = x^2 + 2x +1$
:. 4x = 0
:. x= 0 is a straight line in z-plane
:. Line x=0 is the y-axis.