| written 8.9 years ago by | • modified 6.1 years ago |
(1) Find steady state error.
(2) If it is desired to have steady state error to be 0.2 find corresponding value of ‘k’
(3) Find steadystate error if input is changed to 2+6t and value of ‘k’ to 10.
| written 8.9 years ago by | • modified 6.1 years ago |
(1) Find steady state error.
(2) If it is desired to have steady state error to be 0.2 find corresponding value of ‘k’
(3) Find steadystate error if input is changed to 2+6t and value of ‘k’ to 10.
| written 8.9 years ago by |
G(S) =$\frac{K}{(S(1+S)(1+0.4S)}$
H(S) =1, unity feedback.
(1) For Ramp input
r (t)=4t,
k=2
Steady state error,
$e_ss$=$\frac{A}{k_v}$
$k_v$= $\lim_(s\to 0)$ S G(S) H(S)
=$\lim_(s\to 0)$ $S\frac{k}{(S(1+S)(1+0.4S)}$
=$\lim_(s\to 0)$ $S\frac{2}{(S(1+S)(1+0.4S)}$ =2/(1)(1)
$k_v $ = 2
$e_ss$=$\frac{A}{k_v}$ ,
As A=2 for Ramp input
$e_ss$=2/2 e_ss=1
(2) $e_ss$=0.2, k=?
same input Ramp of …