G(S)=$\frac{1}{(S^2+2S+3)}$
Position error $k_p$= $\lim_(S\to 0)$ G(S) H(S), H(S)=1
=$\lim_(S\to 0)$ $\frac{1}{(S^2+2S+3)}$ x 1
$k_p$=$\frac{1}{3}$
For unit step input, magnitude A=1
$e_ss$=$\frac{A}{(1+k_p )}$=$\frac{1}{(1+1/3)}$
$e_ss$=0.75
Comparing the given equation with second order standard equation
$\frac{(w_n^2)}{(S^2+2ξw_n S+w_n^2 )}$
$w_n^2$=3
Therefore,$w_n$=1.732
$2ξw_n$=2
Therefore, ξ=0.577 underdamped system
Θ=〖tan^(-1)$\sqrt{\frac{(1-ξ2)}{ξ}]}$
Θ=tan^(-1)$\sqrt{\frac{(1-0.577)}{0.577}}]$
=54.76
Θ=0.9557 radians
$w_d$=$w_n$ $\sqrt{(1-ξ2)}$ …
Create a free account to keep reading this post.
and 3 others joined a min ago.