0
Advanced Engineering Maths : Question Paper May 2015 - Electronics & Telecomm (Semester 3) | Gujarat Technological University (GTU)

Advanced Engineering Maths - May 2015

Electrical and Electronics Engg. (Semester 3)

TOTAL MARKS: 100
TOTAL TIME: 3 HOURS
(1) Question 1 is compulsory.
(2) Attempt any four from the remaining questions.
(3) Assume data wherever required.
(4) Figures to the right indicate full marks.
1 (a) (i) Solve the differential equation $$ \dfrac {dy}{dx}+\dfrac {1}{x} = \dfrac {e^y}{x^2} $$(4 marks) 1 (a) (ii) Solve the differential equation yex dx+(2y+ex)dy=0.(3 marks) 1 (b) Find the series solution of (1+x2)y''+xy'-9y=0.(7 marks) 2 (a) (i) Solve the differential equation using the method variation of parameter y'+9y=sec3x.(4 marks) 2 (a) (ii) Solve the differential equation (D2-2D+1)y=10ex.(3 marks)


Answer any one question from Q2 (b) & Q2 (c)

2 (b) Using the method of separation of variables, solve $$ \dfrac {\partial u}{\partial x}= 2 \dfrac {\partial u}{\partial t}+u; \ u(x,0)= 6e^{-3x}. $$(7 marks) 2 (c) Find the series solution of 2x(x-1)y''-(x+1)y'+y=0; x0=0.(7 marks)


Answer any two question from Q3 (a), (b) & Q3 (c), (d)

3 (a) Find the Fourier series for $$ f(x)= \left\{\begin{matrix}\pi + x; &-\pi \ltx\lt0 \\\pi="" -="" x;="" &="" 0="" \lt="" x\lt="" \pi="" \end{matrix}\right.$$<="" a="">

</x&lt;0>
(7 marks)
3 (b) (i) Find the Half range Cosine Series for f(x)=(x-1)2; 0<x&lt;1.&lt; a="">

</x&lt;1.&lt;&gt;<>(4 marks)
3 (b) (ii) Find the Fourier sine series for f(x)=ex; 0<x&lt;&pi;&lt; a="">

</x&lt;&pi;&lt;&gt;<>(3 marks)
3 (c) Find the Fourier series for $$ f(x)= \left\{\begin{matrix}-\pi &-\pi \ltx\lt0 \\="" x-\pi;="" &="" 0="" \lt="" x\lt="" \pi="" \end{matrix}\right.$$<="" a="">

</x&lt;0>
(7 marks)
3 (d) (i) Find the Fourier series for f(x)=x2; 0<x&lt;&pi;&lt; a="">

</x&lt;&pi;&lt;&gt;<>(4 marks)
3 (d) (ii) Find the Fourier sine series for f(x)=2x; 0<x&lt;1.&lt; a="">

</x&lt;1.&lt;&gt;<>(3 marks)


Answer any two question from Q4 (a), (b) & Q4 (c), (b)

4 (a) (i) Prove that $$ i) \ L(e^{at})= \dfrac {1}{s-a}; s>a \\ ii) \ L(\sin h \ at) = \dfrac {a} {s^2-a^2).$$(4 marks) 4 (a) (ii) Find the Laplace transform of t sin 2t.(3 marks) 4 (b) (i) Using convolution theorem, Obtain the value of $$ L^{-1}\left \{ \dfrac {1}{s(s^2+4)} \right \} $$(4 marks) 4 (b) (ii) Find the inverse Laplace transform of $$ \dfrac {1} {(s-2)(s+3)}.$$(3 marks) 4 (c) Solve the initial value problem using Laplace transform:
y''+3y'+2y=e', y(0)=1, y'(0)=0.
(7 marks)
4 (d) (i) Find the Laplace transform of $$ f(t)=f(t)= \left\{\begin{matrix}0; &0\ltt\lt\pi \\\sin="" t="" &t=""\gt \pi \end{matrix}\right. $$</t&lt;\pi>(4 marks) 4 (d) (ii) Evaluate t*et.(3 marks)


Answer any two question from Q5(a), (b) & Q5 (c), (d)

5 (a) Using Fourier integral representation prove that $$ \int^{\infty}_0 \dfrac {\cos \lambda x + \lambda \sin \lambda x}{1+\lambda ^2} dy = \left\{\begin{matrix} 0 &if &x<0 \\ \frac {\pi}{2} & if &x=0 \\ \pi e^{-x} & if &x>0 \end{matrix}\right. $$(7 marks) 5 (b) (i) Form the partial differential equation by eliminating the arbitrary functions from f(x+y+z, x2+y2+z2)=0.(4 marks) 5 (b) (ii) Solve the following partial differential equation (z-y)p+(x-z)q=y-x.(3 marks) 5 (c) A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is $$ u(x,0)=\left\{\begin{matrix} \ \ \ \ x \ \ \ \ ; & 0\le x \le 50 \\ 100-x; & 50\le x \le 100 \end{matrix}\right. $$(7 marks) 5 (d) (i) Solve $$ \dfrac {\partial^2z} {\partial x^2} + 3\dfrac {\partial^2z}{\partial x \partial y} + 2\dfrac {\partial ^2z}{\partial y^2} = x+y.(4 marks) 5 (d) (ii) Solve p-x2=q+x2.(3 marks)

0  upvotes

Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.

Search

Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More