$p_1=1bar,T_1=300K,p_2=50bar,Q_i=20KJ/mole×35.71=714.2KJ/Kg,$
$C_p=3.5×R=3.5×287=1004.5 J/KgK$
$p_1 v_1=mRT_1$
$100×v_1=0.287×300$
$v_1=0.861m^3$
$p_1 v_1^γ=p_2 v_2^γ$
$1×0.864^1.4=50×v_2^1.4$
$v_2=0.0528m^3$
Compression ratio:
r=$\frac{v_1}{v_2} =\frac{0.861}{0.0528}$
r=16.31
$\frac{T_2}{T_1}$ =$r^(γ-1)$=$16.31^(1.4-1)$
=3.055 $T_2$
=300×3.055=916.43K
Heat supplied at constant pressure
$Q_i=C_p (T_3-T_2 )$
714.2=1.0045($T_3$-916.43)
$T_3$=1627.43K
Cut off ratio
ρ=$\frac{T_3}{T_2} =\frac{1627.43}{916.34}$
ρ=1.78
1.78= $\frac{v_3}{v_2}$
1.78= $\frac{v_3}{0.0528}$
$v_3=0.094m^3$
$\frac{T_3}{T_4}$ =$\frac{v_4}{v_3 }^(γ-1)$
$\frac{1627.43}{T_4} =\frac{0.861}{0.094}^(1.4-1)$
$T_4$=671.05K
$η_th$=1-$\frac{(T_4-T_1)}{γ(T_3-T_2 )}$ =1-$\frac{(671.05-300)}{1.4(1627.43-916.43)}$
$η_th$=0.6272
=62.72%