0
1.5kviews
We know that systematic form of $G = [I_k | P]$

Number of bits in codeword n = 6

No. of bits in each message vector K = 3

No. of extra bits added q = n - k = 3

Given

$\begin{bmatrix} \ 1 \hspace{0.5cm} 0 \hspace{0.5cm} 0 & 1 \hspace{0.5cm} 1 \hspace{0.5cm} 1 \\ \ 0 \hspace{0.5cm} 1 \hspace{0.5cm} 0 & 1 \hspace{0.5cm} 1 \hspace{0.5cm} 0\\ \ 0 \hspace{0.5cm} 0 \hspace{0.5cm} 1 & 0 \hspace{0.5cm} 1 \hspace{0.5cm} 1\end{bmatrix}$

1 Answer
0
1views

$\therefore P = \begin{bmatrix} \ 1 & 1 & 1 \\ \ 1 & 1 & 0 \\ \ 0 & 1 & 1 \\ \end{bmatrix} H = \begin{bmatrix} \ 1 1 0 & 1 0 0 \\ \ 1 1 1 & 0 1 0 \\ \ 1 0 …

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.