0
Applied Mathematics 1 : Question Paper Dec 16 - First Year Engineering (Semester 1) | Mumbai University (MU)

Applied Mathematics 1 - Dec 16

First Year Engineering (Semester 1)

Total marks: 80
Total time: 3 Hours
INSTRUCTIONS
(1) Question 1 is compulsory.
(2) Attempt any three from the remaining questions.
(3) Draw neat diagrams wherever necessary.

1(a) If cos α cosh $ \beta =\frac{x}{2},\sin \alpha sinh \beta =\frac{y}{2}, $/ Prove that $ sec\left ( \alpha -i\beta \right )+sec\left ( \alpha +i\beta \right )= \frac{4x}{x^2+y^2}$/
(3 marks) 00

1(b) If $ z=\log \left ( e^x+e^y \right ) $/, show that rt-s2=0, where $ r = \frac{\partial^2 z}{\partial x^2}, t = \frac{\partial^2 z}{\partial y^2}, s =\frac{\partial^2 z}{\partial x \partial y} $/
(3 marks) 00

1(c) If x = u v, $$y = \frac{u+v}{u-v}. $$ Find $$\frac{\partial \left ( u,v \right )}{\partial \left ( x,y \right )}$$.
(3 marks) 00

1(d) If $ y = 2^{x}\sin ^2x\cos x $/ find yn
(3 marks) 00

1(e) Express the matrix $ A =\begin{bmatrix} 1 & 0& 5& 3\\\\ -2& 1& 6& 1\\\\ 3 & 2& 7& 1\\\\ 4& -4& 2& 0 \end{bmatrix} $ as the sum of symmetric and skew- symmetric matrices.
(4 marks) 00

1(f) Evaluate $$\lim_{x\rightarrow 0}\frac{e^2-\left ( 1+x \right )^2}{x\log \left ( 1+x \right )}$$
(4 marks) 00

2(a) Show that the roots of x5=1 can be written as 1,
α,
α2,
α3,
α4. Hence show that $$\left ( 1-\alpha \right )\left ( 1-\alpha ^2 \right )\left ( 1 -\alpha ^3 \right )\left ( 1 -\alpha ^4 \right ) = 5$$
(6 marks) 00

2(b) Reduce the following matrix to its normal from and hence find its rank $$A = \begin{bmatrix} 3 & -2& 0& 1\\ 0& 2& 2& 7\\ 1& -2& -3& 2\\ 0& 1& 2& 1 \end{bmatrix}$$
(6 marks) 00

2(c) Solve the following system of equations by Gauss-Seidel Iterative Method upto four interations.
4x-2y-z=40
x-6y+2z=-28
x-2y+12z = -86
(8 marks) 00

3(a) Investigate for what values of 'λ' and 'μ' the system of equations $x+y+z = 6 x+2 y+3 z = 10 x + 2 y + λ z = μ $/ has i) no solution
ii) a unique solution
iii) an infinite no. of solutions.
(6 marks) 00

3(b) If $u = x^2+y^2+z^2 $/, where $ x = e^t, y = e^t \sin t, z = e^t \cos t $/ Prove that $$\frac{du}{dt} = 4e^{2t}$$
(6 marks) 00

3(c)(i) Show that $$\sin \left ( e^x -1 \right ) = x+\frac{x^2}{2}-\frac{5x^4}{24}+.........$$
(4 marks) 00

3(c)(ii) Expand 2x3+7x2+x-6 in power of x-2
(4 marks) 00

4(a) If x=u+v+w,
y = uv+vw+uw,
z=uvw and φ is a function of x,y and z. Prove that $$x\frac{\partial\phi }{\partial x}+2y\frac{\partial^\phi }{\partial y}+3z\frac{\partial \phi }{\partial z} = u\frac{\partial \phi }{\partial u}+ v\frac{\partial\phi }{\partial v} + \frac{\partial \phi }{\partial w}$$
(6 marks) 00

4(b) if $ \tan \left ( \theta+i\phi \right )=\tan \alpha + i\sec \alpha $/, Prove that
i) $$e^{2\phi } = \cot \frac{\alpha }{2}$$
ii) $$2\theta =n\pi +\frac{\pi }{2} + \alpha $$
(6 marks) 00

4(c) Find the root of the equation x4+x3+7x2-x+5=0 which lies between 2 and 2.1 correct to three places of decimals using Regula Falsi Method.
(8 marks) 00

5(a) If $ y = \left ( x+\sqrt{x^2-1} \right )^m $/, Prove That $$\left ( x^2-1 \right )y_{n+2}+(2n+1)xy_{n+1}+\left ( n^2-m^2 \right ) y _n =0$$.
(6 marks) 00

5(b) Using the encoding matrix $ \begin{bmatrix} 1 & 1\\\\ 0& 1 \end{bmatrix} $/, encode and decode the message I* LOVEMUMBAI
(6 marks) 00

5(c)(i) Consulting only principal values separate into real and imaginary parts $$i^\log \left ( 1+i \right )$$
(4 marks) 00

5(c)(ii) Show that $$i\log \left ( \frac{x-i}{x+i} \right ) = \pi -2\tan ^{-1}x$$
(4 marks) 00

6(a) Using De Moivre's theorem prove that $$\cos ^6\theta -\sin ^6\theta =\frac{1}{16}\left ( \cos 6\theta +15\cos 2\theta \right )$$
(6 marks) 00

6(b) If$ u = sin ^{-1}\left ( \frac{x^\frac{1}{3}+y^\frac{1}{3}}{x^\frac{1}{2}-y^\frac{1}{2}} \right )^\frac{1}{2} $/, Prove that $$x^2\frac{\partial^2 u}{\partial x^2}+2xy\frac{\partial^2 u}{\partial x\partial y}+y^2\frac{\partial^2 u}{\partial y^2}=\frac{\tan u}{144}\left ( \tan ^2u +13 \right )$$
(6 marks) 00

6(c) Discuss the maxima and minima of $$f\left ( x,y \right )= x^3y^2\left ( 1-x-y \right )$$
(8 marks) 00

0  upvotes

Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.

Search

Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More