Applied Mathematics - 3 : Question Paper Dec 2016 - Electronics & Telecomm (Semester 3) | Mumbai University (MU)

Applied Mathematics - 3 - Dec 2016

Electronics & Telecomm. (Semester 3)

(1) Question 1 is compulsory.
(2) Attempt any three from the remaining questions.
(3) Assume data if required.
(4) Figures to the right indicate full marks.
1(a) Determine the constants a, b, c, d, e if $ f(z)=\left ( ax^4+bx^2 y^2 +cy^4+dx^2-2y^2\right )+\left ( 4x^3 y-exy^3+4xy \right ) $/ is analytic.(5 marks) 1(b) Find half range Fourier sine series for f(x)=x2, 0<x&lt;3.&lt; a="">

</x&lt;3.&lt;&gt;<>(5 marks)
1(c) Find the directional derivative of $ \varphi \left ( x,y,z \right )=xy^2+yz^3 $/ at the point (2,-1,1) in the direction of the vector i + 2j + 2k.(5 marks) 1(d) Evaluate $$\int_{0}^{\infty }e^{-2t}t^{5}\cosh t\ dt.$$(5 marks) 2(a) Prove that $$\jmath_ \frac{3}{2}(x)=\sqrt{\frac{2}{\pi x}}\left ( \frac{\sin x}{x}-\cos x \right )$$(6 marks) 2(b) If f(z) = u + iv is analytic and $ u-v=e^x\left ( \cos y-\sin y \right )$/, fin f(z) in terms of z.(6 marks) 2(c) Obtain Fourier series for $\begin{align*} \begin{matrix} f(x)&= x+\frac{\pi }{2} &-\pi / Hence deduce that $\frac{\pi ^2}{8}=\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{s^2}+.....$\lt/span\gt\lt/span\gt\ltspan class='paper-ques-marks'\gt(8 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3(a)\lt/b\gt Show that \ltspan class="math-tex"\gt$F=\left ( 2xy+z^3 \right )i+x^2j+3xz^2k $\lt/span\gt/, is a conservative field. Find its scalar potential and also find the work done by the force F in moving a praticle from (1,-2,1) to (3, 1, 4).\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3(b)\lt/b\gt Show that the set of functions \ltspan class="math-tex"\gt$ \left { \sin \left ( 2n+1 \right )x \right },n=0, 1, 2,...$\lt/span\gt/ is orthogonal over [0,π/2}. Hence consturct orthonormal set of fucntions.\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3(c)\lt/b\gt i)$$L^{-1}\left { \cot ^{-1}\left ( s+1 \right ) \right }$$
ii)$$L^{-1}\left ( \frac{e^{-2s}}{s^2+8s+25} \right )$$
(8 marks)
4(a) Prove that $$\int \jmath _3(x)dx=\frac{2\jmath _1(x)}{x}-\jmath _2(x)$$(6 marks) 4(b) Find inverse Laplace of $ \frac{s}{\left ( s^2+a^2 \right )\left ( s^2+b^2 \right )}\left ( a\neq b \right ) $/ using Convolution theorem.(6 marks) 4(c) Expand f(x) = xsinx in the interval 0≤x≤2π as a Fourier series. Hence, deduce that $$\sum_{{n=2}}^{\infty }\ \ \frac{1}{n^2-1}=\frac{3}{4}$$(8 marks) 5(a) Using Gauss Diveragence theorem evaluate $\int \int _s\bar{N.}\bar{F}ds\ \ \text{where} \bar{F}=x^2i+zj+yzk $/ and S is the cube bounded by x=0, x=1, y=0, y=1, z=0, z-1(6 marks) 5(b) Prove that $$ \ j^{'}_{2}(x)=\left ( 1-\frac{4}{x^2} \right )\jmath _1(x)+\frac{2}{x}\jmath 0(x) \ ](6 marks) 5(c) Solve $ \left ( D^23D+2 \right )y=2\left ( t^2+t+1 \right )$/, with y(0)=2 and y(0)=0 by using Laplace transform(8 marks) 6(a) Evaluate by Green's theorem for $\int _c\left ( e^{-x}\sin dx+e^{-x} \cos y dy\right ) $/ where C is the rectangle whose vertices are (0,0), (π, 0), (π, π/2)(6 marks) 6(b) Show that under the transformation $ w=\frac{z-i}{z+i} $/ real axis in the z-plane is mapped onto the circle |w|=1(6 marks) 6(c) Find Fourier integral representation for $$f(x)\frac{e^{-ax}}{x}$$(8 marks)


Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.


Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More