0
2.7kviews
Design a DFA that rejects any string over {1,2,3} where 2 is immediately preceded by a 1. It should accept all other strings.
1 Answer
| written 8.0 years ago by |
$\epsilon$-NFA for the problem is \ltcenter\gt![enter image description here][1]\lt/center\gt | S | {B,C} | {B.C} | {B.C} | |---|---------|--------|---------| | A | {B.C} | {B.C} | {B.C} | | B | {D} | $\Phi$ | $\Phi$ | | C | {D} | $\Phi$ | $\Phi$ | | D | {E,F,G} | $\Phi$ | {E,F,G} | | E | {G,H} | {G,H} | {G,H} | | F | {G,H} | {G,H} | {G,H} | | G | $\Phi$ | $\Phi$ | $\Phi$ | | H | $\Phi$ | $\Phi$ | $\Phi$ |
S:

A:

B:

C:

D:

E:

F:

G:

H:

NFA is given as

| States\Inputs | 1 | 2 | 3 |
|---|---|---|---|
| S | {B,C} | {B,C} | {B,C} |
| A | {B,C} | {B,C} | {B,C} |
| B | {D} | {I} | {I} |
| C | {D} | {I} | {I} |
| D | {E,F,G} | {I} | {E,F,G} |
| E | {G,H} | {G,H} | {G,H} |
| F | {G,H} | {G,H} | {G,H} |
| G | {I} | {I} | {I} |
| H | {I} | {I} | {I} |
| I | {I} | {I} | {I} |
Final DFA is
