written 7.3 years ago by
teamques10
★ 69k
|
•
modified 7.3 years ago
|
depth of cut; $b_1$=10mm
f=1mm/rev
chip thickness ratio;$ r_c$=0.33
As per A.S.A. system
$\alpha=10^0$
$f_{so}=1000kg/m^2$
=$98.1 N/mm^2$
k=0.2
$2\varphi+\beta –\alpha= cot^{-1}k=C_m$
cot $C_m= 0.2$
therefore $C_m$ = 78.69
$\therefore 2\varphi+\beta –\alpha $= 78.69……………….1
also,
$tan \Phi = \frac{r_c \times cos \alpha}{1 - r_c sin a} \Rightarrow tan \Phi= \frac{0.33\times cos 10}{1-0.33 sin 10}$
$\therefore \varphi=19.02^0$
1) R
$F_s= R cos(\varphi+\beta –\alpha) =R (0.504)$
$F_N= R Sin(\varphi+\beta–\alpha) = R( 0.863)$
$f_s = f_{so} + k_1f_N$
$\therefore \frac{F_s}{\frac{t_1b_1}{sin \Phi}}= 98.1 +\frac{F_N}{\frac {t_1b_1}{sin \Phi}} \Rightarrow \frac{R (0.504)}{30.68}= 98.1 +\frac{R( 0.863)}{30.68}$
Therefore R=9432.69 N……….ans
2) MRR
volume of material removed=$t_1 \times b_1 \times V_c \times 1000 (V_c$=60m/min mistake in question)
MRR=$ 1 \times 10 \times 60 \times 1000$
MRR= $600 \times 10^3 mm^3/min$
3)Shear strain
Shear strain=$cot \varphi +tan(\varphi- \alpha)$
=cot (19.02) + tan(9.02)
shear strain= 3.05
4) HP at the tool per cubic cm of metal removal /minute.
From merchant circle
$cos (\beta-\alpha) =\frac{F_c}{R}$
therefore, $F_c=7156.6N$
$P_c=\frac{F_c(in kg) \times V_c}{4500}\Rightarrow Pc =\frac{729.59 \times 60}{4500}$
therefore, $P_c$=9.726HP
Now HP per $cm^3/min$
i.e. $\frac{9.726}{600}$
= 0.01621 HP per $cm^3/min$