written 6.8 years ago by
teamques10
★ 68k
|
•
modified 6.6 years ago
|
Characteristic eqn |A- λI| =0
i.e.
$
\begin{vmatrix}
1-λ&2&-2 \\
-1&3-λ&0 \\
0&-2&1-λ
\end{vmatrix} = 0
$
Expanding we get a cubic equation in λ, as $ λ^3 - 5λ^2 + 7λ - 3 =0$
By C-H theorem we have $A^3 - 5A^2 + 7A – 3I =0$ ……….(1)
To find the value of given matrix eqn , divide the matrix eqn
$A^8-5A^7+7A^6-3A^5+A^4-5A^3+8A^2-2A+I$ by the L.H.S. of eqn (1),
we get quotient $A^5+A$ & the remainder $A^2+A+I$ ,it can be written as
$A^8-5A^7+7A^6-3A^5+A^4-5A^3+8A^2-2A+I $
= $( A^3 - 5A^2 + 7A – 3I ) (A^5+A) + (A^2+A+I ) $
$= A^2+A+I \,\,\,\,\,\,\, $ ( using eqn 1)
$
=
\begin{bmatrix}
5&4&4 \\
0&1&0 \\
4&4&5
\end{bmatrix}
+
\begin{bmatrix}
2&1&1 \\
0&1&0 \\
1&1&2
\end{bmatrix}
+
\begin{bmatrix}
1& 0& 0 \\
0& 1& 0 \\
0& 0& 1
\end{bmatrix}
=
\begin{bmatrix}
8& 5& 5 \\
0& 3& 0 \\
5& 5& 8
\end{bmatrix}
$