| written 8.0 years ago by | • modified 5.7 years ago |
Write the Dual the following L.P.P
Max. $Z = 2x_1 - x_2 + 3x_3 ,$
$ \text{subject to} \hspace{0.2cm} x_1 -2 x_2 + x_3 ≥4 ; 2 x_1 + x_3 ≤10$
$x_1 +x_2 + 3x_3 =20 ; x_1, x_3 ≥ 0, x_2$ is unrestricted
| written 8.0 years ago by | • modified 5.7 years ago |
Write the Dual the following L.P.P
Max. $Z = 2x_1 - x_2 + 3x_3 ,$
$ \text{subject to} \hspace{0.2cm} x_1 -2 x_2 + x_3 ≥4 ; 2 x_1 + x_3 ≤10$
$x_1 +x_2 + 3x_3 =20 ; x_1, x_3 ≥ 0, x_2$ is unrestricted
| written 7.9 years ago by | • modified 7.6 years ago |
To write the dual , if Z is maximization type, all the constraint must be less or equal to type ,first constraint is greater than equal to type , so multiply it by (-1) i.e. $-x_1 +2 x_2 - x_3 ≤ - 4$
Also $x_2$ is unrestricted , we write $x_2 =x_2'-x_2''$.
Third constraint is of equality form that we write in inequality form as
$x_1 +x_2 + 3x_3 ≤20$ & $x_1 +x_2 + 3x_3 ≥20$
Therefore above L.P.P can be written as $Max. Z = 2x_1 –(x_2'-x_2'') + 3x_3$
Subject to , $-x_1 +2(x_2'-x_2'') - x_3 ≤ - 4 $
$2 x_1 + 0(x_2'-x_2'') + x_3 ≤10$
$x_1 + (x_2'-x_2'')+ 3x_3 ≤20 $
$-x1 - (x_2'-x_2'') - 3x_3 ≤-20 $
$x_1 , x_2' ,x_2'' , x3 ≥ 0$
Dual of the L.P.P can be written as:
$Min. w = - 4y_1 +10y_2 +20y_3' – 20y_3''$
Subject to $– y_1 + 2y_2 +y_3' –y_3''≥ 2$
$2y_1 + 0y_2 +y_3' – y_3''≥ - 1$
$-2 y1 - 0y2 –y_3'+y_3'' ≥ 1$
$- y_1 + y_2 + 3y_3' -3 y_3''≥3$
$y_1, y_2 , y_3' , y_3'' ≥ 0$